In my answer to this question, I come across the following case of the Meijer G-function:
$$F(b)=G^{2~2}_{3~3}\left(1\middle|\begin{array}c1,1;b+1\\b,b;0\end{array}\right), b>0$$
and based on my experiments, $F(b)$ have the following closed form:
$$F(b) \stackrel?=\frac{\Gamma(b)}{b}\left(-\gamma-\psi(b)+\frac{2^{1-b}}{b}{_2F_1}\left(\begin{array}c1,1\\b+1\end{array}\middle|-1\right)+b{_3F_2}\left(\begin{array}c1,1,b+1\\2,2\end{array}\middle|-1\right)\right)$$
Is there any chance of proving this?
Edit: Using the definition of the Meijer G-Function, $F(b)$ have the integral representation: $$F(b)=\frac{1}{2\pi}\int^{+\infty}_{-\infty}\frac{\Gamma(\tfrac{b}{2}+ix)\Gamma(\tfrac{b}{2}-ix)}{\tfrac{b^2}{4}+x^2}dx.$$
Edit 2: I've found a further generalization: $$F(b,z)=G^{2~2}_{3~3}\left(z\middle|\begin{array}c1,1;b+1\\b,b;0\end{array}\right)=\frac{1}{2\pi}\int^{+\infty}_{-\infty}\frac{\Gamma(\tfrac{b}{2}+ix)\Gamma(\tfrac{b}{2}-ix)}{\tfrac{b^2}{4}+x^2}e^{(b/2+ix)\log z}dx\\ \stackrel?=\frac{\Gamma(b)z^b}{b}\left(-\log z-\gamma-\psi(b)+\frac{(z+1)^{1-b}}{b}{_2F_1}\left(\begin{array}c1,1\\b+1\end{array}\middle|-z\right)+bz~{_3F_2}\left(\begin{array}c1,1,b+1\\2,2\end{array}\middle|-z\right)\right), b\not\in\{0,-1,-2,\dots\},z\neq0,-1.$$ Edit 3: Further simplified the ${_2F_1}$ part.