if $f'''(x)$ is continuous everywhere and $$\lim_{x \to 0}(1+x+ \frac{f(x)}{x})^{1/x}=e^3$$ Compute $f''(0)$
The limit equals to $$\begin{align} \lim_{x \to 0} \frac{\log(1+x+ \frac{f(x)}{x})}{x}-3=0. \end{align}$$ From $$\frac{\log(1+x+ \frac{f(x)}{x})}{x}-3=o(1)$$ as $x \to 0$, I get $$1+x+\frac{f(x)}{x} = e^{3x+o(x)},$$ and $$f(x)=x(e^{3x+o(x)}-x-1),\frac{f(x)}{x}=e^{3x+o(x)}-x-1$$ as $x \to 0$. So both $f(0)$ and $f'(0)$ are $0$. Approximating $e^{3x+o(x)}=1+3x+o(x)$ I get $$\begin{align} f(x) &= x(1+3x+o(x)-x-1) =2x^2+o(x^2). \end{align}$$ Now I try to use the definition of derivative to calculate the $f''(x)$ $$f''(x)=\lim_{x \to 0}\frac{f'(x)-f'(0)}{x}=\lim_{x \to 0} \frac{f'(x)}{x}$$ I'm not sure whether I can get $f'(x)$ by differentiating the approximation $2x^2+o(x^2)$ and how to differentiate $o(x^2)$.