So, I wonder what is the evaluation of $$\sum_{k = 0}^{n} {n\choose k} k^m\text{,}\qquad (*)$$ where $m,n\in \mathbb{N}$.
One of my tries: knowing that $$k^m = \sum_{j = 0}^{m}\text{S}(m,j)\cdot k(k-1)\cdots(k-j+1)\text{,}$$ where $\text{S}(m,k)$ are Stirling numbers of the second kind, and $$\sum_{k = 0}^n {n\choose k} k(k-1)\cdots(k-j+1) =2^{n-j}\cdot n(n-1)\cdots(n-j+1)\text{,}$$ I have rewritten the upper sum into $$\sum_{k = 0}^{n}\sum_{j = 0}^m {n\choose k} \text{S}(m,j)\cdot k(k-1)\cdots(k-j+1)\text{.}$$ Changing the order of summation, we get $$\sum_{j = 0}^{m}\text{S}(m,j) \cdot 2^{n-j}\cdot n(n-1)\cdots (n-j+1)\text{,}$$ and here it stops.