EDIT: Consider $m,n\in\mathbb{Z}$ with $\frac{m}{n}\in \mathbb{R} -\mathbb{Z}$ and $n>1$.
Given integers $m,n$ I want to prove that $$\bigg\lfloor \frac{m}{n} \bigg\rfloor=\frac{m}{n}-\frac{1}{2}+\frac{1}{2n}\sum_{k=1}^{n-1} \sin \bigg(\frac{2\pi km}{n}\bigg) \cot \bigg(\frac{\pi k}{n}\bigg)$$
Using a Fourier expansion I obtain $$ \bigg\lfloor \frac{m}{n} \bigg\rfloor=\frac{m}{n}-\frac{1}{2}+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\sin (2\pi k \frac{m}{n})} {k}$$
However, I do not see how $$\frac{1}{2n}\sum_{k=1}^{n-1}\sin\bigg( \frac{2\pi km}{n} \bigg)\cot \bigg(\frac{\pi k}{n} \bigg) =\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\sin (2\pi k \frac{m}{n})} {k}$$
EDIT This link http://functions.wolfram.com/IntegerFunctions/Floor/06/ShowAll.html also claims that they are equal.