Another way is to expand using partial fractions. The algebra in doing this is easier if you first make the substution $u = 3-x$:
$$ \frac{(x-1)^2}{(3-x)^2} \;\; =\;\; \frac{(2-u)^2}{u^2} \;\; = \;\; \frac{4 - 4u + u^2}{u^2} \;\; = \;\; \frac{4}{u^2} - \frac{4}{u} + 1$$
$$= \;\; \frac{4}{(3-x)^2} - \frac{4}{3-x} + 1 $$
Now notice that this equals
$$-4\frac{d}{dx} \left(\frac{1}{3-x}\right) \;\; - \;\; 4\left(\frac{1}{3-x}\right) \;\; + \;\; 1 $$
Also, using geometric series ideas we have
$$ \frac{1}{3-x} \;\; = \;\; \frac{1}{3\left(1 - \frac{x}{3}\right)} \;\; = \;\; \frac{\frac{1}{3}}{\left(1 - \frac{x}{3}\right)} $$
$$ = \;\; \frac{1}{3} \left[ 1 + \left(\frac{x}{3}\right) + \left(\frac{x}{3}\right)^2 + \left(\frac{x}{3}\right)^3 + \ldots \right] $$
$$ = \;\; \frac{1}{3} \left[ 1 \; + \; \frac{1}{3}x \; + \; \frac{1}{3^2}x^2 \; + \frac{1}{3^3}x^3 \; + \; \ldots \right] $$
Differentiate term-by-term, plug into what follows Now notice that this equals, and combine like terms (citing absolute convergence if you need justification).