Let $P$ be a polynomial in $R[X]$. Then show that
$P(X) -X$ divides $P(P(X))-X$
Let $P$ be a polynomial in $R[X]$. Then show that
$P(X) -X$ divides $P(P(X))-X$
Let $I$ be the ideal of $R[X]$ generated by $P(X)-X.$ You want to show that $P(P(X)) - X$ maps to zero under the canonical map $R[X]\to R[X]/I.$ This is true since in the quotient ring, $P(X)=X$ so $P(P(X) ) - X = P(X)- X=0.$
If the degree of $P$ is less or equal $0$ then the result is clear.
Otherwise, let $P(X)=\sum_{k=0}^n a_k X^k,\; n\ge1$.
$$P(P(X))-X=P(P(X))-P(X)+P(X)-X=\sum_{k=0}^n a_k\left((P(X))^k-X^k\right)+P(X)-X\\=\sum_{k=1}^n a_k\left((P(X))^k-X^k\right)+P(X)-X$$ But for $1\le k\le n$, $$(P(X))^k-X^k=(P(X)-X)\left((P(X))^{k-1}+(P(X))^{k-2}X+\cdots+P(X)X^{k-2}+X^{k-1}\right)$$ is divisible by $P(X)-X$ so it's the same for $P(P(X))-X$.
${\rm mod}\,\ p(x)\!-\!x\!:\,\ \color{#c00}{p(x)\equiv x}\,\Rightarrow\, p(\color{#c00}{p(x)})\equiv p(\color{#c00}x)\equiv x\ $ by the Polynomial Congruence Rule.
Let $X_i$ be a solution of $P(X)-X=0$
Then $P(P(X_i))-X_i = P(P(X_i)-X_i+X_i)-X_i=P(X_i)-X_i=0$ ?
– Marko Karbevski Mar 13 '14 at 07:26