The question is: Is this correct?
This is pretty much the first thing I've tried to come up with by myself. I wanted to see what would happen if I tried to calculate volume of a solid of revolution of the Weierstrass-like function. I'm pretty bad at calculus so I'm pretty certain there are lot's errors but I wanted to share it anyway and maybe get some feedback.
Please, let the bashing begin!
Let $w(x) := \displaystyle\sum_{k= 0}^{\infty} a^k\cos(b^k\pi x) $ where $0 < a < 1$ and $ab > 1+ \frac{3\pi}{2}, b$ is an odd integer greater than $1$.
Let us limit $w(x)$ to $n$ so that, $w(x)_n := \displaystyle\sum_{k= 0}^{n} a^k\cos(b^k\pi x) $. Consider the volume of the solid formed by rotating the area of $w(x)_n$ on the x-axis in the interval $[\alpha,\beta]$ given by,
$V_{w(x)_n} =\pi\displaystyle\int_{\alpha}^{\beta} (w(x)_n)^2dx = \pi\displaystyle\int_{\alpha}^{\beta} (\displaystyle\sum_{k= 0}^{n} a^k\cos(b^k\pi x) )^2dx =$
$\pi\displaystyle\int_{\alpha}^{\beta} (\cos(\pi x) + a\cos(b \pi x) + a^2\cos(b^2 \pi x) + \ldots + a^n\cos(b^n \pi x))^2dx =$
$\pi\displaystyle\int_{\alpha}^{\beta} (\cos(\pi x) + a\cos(b \pi x) + a^2\cos(b^2 \pi x) + \ldots + a^n\cos(b^n \pi x))(\cos(\pi x) + a\cos(b \pi x) + a^2\cos(b^2 \pi x) + \ldots + a^n\cos(b^n \pi x))dx =$
$\pi\displaystyle\int_{\alpha}^{\beta} [ \cos(\pi x)(\cos(\pi x) + a\cos(b \pi x) + a^2\cos(b^2 \pi x) + \ldots + a^n\cos(b^n \pi x)) +$
$\cos(\pi x)(\cos(\pi x) + a\cos(b \pi x) + a^2\cos(b^2 \pi x) + \ldots + a^n\cos(b^n \pi x)) + $
$a\cos(b \pi x) (\cos(\pi x) + a\cos(b \pi x) + a^2\cos(b^2 \pi x) + \ldots + a^n\cos(b^n \pi x)) + $ $a^2\cos(b^2 \pi x)(\cos(\pi x) + a\cos(b \pi x) + a^2\cos(b^2 \pi x) + \ldots + a^n\cos(b^n \pi x)) + $$\ldots +$
$a^n\cos(b^n \pi x)(\cos(\pi x) + a\cos(b \pi x) + a^2\cos(b^2 \pi x) + \ldots + a^n\cos(b^n \pi x)) ] dx =$
$\pi\displaystyle\int_{\alpha}^{\beta}[ (\cos^2(\pi x) + a\cos(\pi x)\cos(b \pi x) + a^2\cos(\pi x)\cos(b^2 \pi x) + \ldots + a^n\cos(\pi x)\cos(b^n \pi x)) +$
$( a^2\cos^2(b \pi x)+a\cos(b \pi x) \cos(\pi x) + a^3\cos(b \pi x)\cos(b^2 \pi x) + \ldots + a^{n+1}\cos(b \pi x)\cos(b^n \pi x)) +$
$(a^4\cos^2(b^2 \pi x) + a^2\cos(b^2 \pi x) \cos(\pi x) + a^3\cos(b^2 \pi x) \cos(b \pi x) + \ldots + a^{n+2}\cos(b^2 \pi x) \cos(b^n \pi x)) + \ldots + $
$( a^{2n}\cos^2(b^n \pi x)) + a^n\cos(b^n \pi x)) \cos(\pi x) + a^{n+1}\cos(b^n \pi x)) \cos(b \pi x) + a^{n+2}\cos(b^n \pi x)) \cos(b^2 \pi x) + \ldots + a^{2n-1}\cos(b^n \pi x)) \cos(b^{n-1} \pi x)) ]dx = $
$ \pi\displaystyle\int_{\alpha}^{\beta} ([ \displaystyle\sum_{k= 1}^{n+1}a^{2(k-1)}\cos^2(b^{k-1}\pi x) ] + [\bigcup _{i,j=0,i\neq j}^{n}a^{i+j}\cos(b^i\pi x)\cos(b^j\pi x)])dx =$
$ \pi[\displaystyle\int_{\alpha}^{\beta} \displaystyle\sum_{k= 1}^{n+1}a^{2(k-1)}\cos^2(b^{k-1}\pi x)dx + \displaystyle\int_{\alpha}^{\beta} \bigcup _{i,j=0,i\neq j}^{n}a^{i+j}\cos(b^i\pi x)\cos(b^j\pi x)dx] =$
[ A miracle happens here When can a sum and integral be interchanged? If this is correct, how can I motivate this? ]
$ \pi[ \displaystyle\sum_{k= 1}^{n+1}\displaystyle\int_{\alpha}^{\beta} a^{2(k-1)}\cos^2(b^{k-1}\pi x)dx + \displaystyle\int_{\alpha}^{\beta} \bigcup _{i,j=0,i\neq j}^{n}a^{i+j}\cos(b^i\pi x)\cos(b^j\pi x)dx] =$
$ \pi[ \displaystyle\sum_{k= 1}^{n+1} a^{2(k-1)}\displaystyle\int_{\alpha}^{\beta} \cos^2(b^{k-1}\pi x)dx + \bigcup _{i,j=0,i\neq j}^{n}a^{i+j} \displaystyle\int_{\alpha}^{\beta}\cos(b^i\pi x)\cos(b^j\pi x)dx] =$
Note that
$\int \cos^2(\gamma_1 x)dx = \frac{2\gamma_1 x + \sin(2\gamma_1x )}{4\gamma_1} + c$ and
$\int \cos(\gamma_1 x)cos(\gamma_2 x)dx = \frac{\gamma_1 \sin(\gamma_1 x)\cos(\gamma_2 x) - \gamma_2 \cos(\gamma_1 x)\sin(\gamma_2 x) }{\gamma_1^2 -\gamma_2^2} + c, \gamma_1, \gamma_2 \in \mathbb{R} $
Thus,
$ \pi[ \displaystyle\sum_{k= 1}^{n+1} a^{2(k-1)}\displaystyle\int_{\alpha}^{\beta} \cos^2(b^{k-1}\pi x)dx + \bigcup _{i,j=0,i\neq j}^{n}a^{i+j} \displaystyle\int_{\alpha}^{\beta}\cos(b^i\pi x)\cos(b^j\pi x)dx] =$
$ \pi[ \displaystyle\sum_{k= 1}^{n+1} a^{2(k-1)} \Big| \frac{2\pi b^{k-1}x + \sin(2\pi b^{k-1}x)}{4\pi b^{k-1}} \Big|_\alpha^\beta + \bigcup _{i,j=0,i\neq j}^{n}a^{i+j} \Big| \frac{(-b^j -b^i)\sin(\pi x b^i - \pi x b^j) + (b^j -b^i)\sin(\pi x b^j + \pi x b^i)} {2\pi (b^j -b^i) (b^j + b^i)} \Big|_\alpha^\beta ] $
Now restrict $\alpha, \beta \in \mathbb{R}: \alpha, \beta \in \mathbb{Z}$
Now, note that, $ \sin(2\pi b^{k-1}x) = \sin(\pi y) = 0, \forall y \in \mathbb{Z}$ $ \sin(\pi x b^i - \pi x b^j) = \sin(\pi (x b^i - x b^j)) = \sin(\pi y) = 0 \forall y \in \mathbb{Z}$ and $\sin(\pi x b^j + \pi x b^i) = \sin(\pi (x b^j + x b^i)) = \sin(\pi y) = o \forall y \in \mathbb{Z}$
Which implies that,
$ \pi[ \displaystyle\sum_{k= 1}^{n+1} a^{2(k-1)} \Big| \frac{2\pi b^{k-1}x + \sin(2\pi b^{k-1}x)}{4\pi b^{k-1}} \Big|_\alpha^\beta + \bigcup _{i,j=0,i\neq j}^{n}a^{i+j} \Big| \frac{(-b^j -b^i)\sin(\pi x b^i - \pi x b^j) + (b^j -b^i)\sin(\pi x b^j + \pi x b^i)} {2\pi (b^j -b^i) (b^j + b^i)} \Big|_\alpha^\beta ] =$ $ \pi[ \displaystyle\sum_{k= 1}^{n+1} a^{2(k-1)} \Big| \frac{2\pi b^{k-1}x + 0}{4\pi b^{k-1}} \Big|_\alpha^\beta + \bigcup _{i,j=0,i\neq j}^{n}a^{i+j} \Big| \frac{(-b^j -b^i)0 + (b^j -b^i)0} {2\pi (b^j -b^i) (b^j + b^i)} \Big|_\alpha^\beta ] =$
$ \pi[ \displaystyle\sum_{k= 1}^{n+1} a^{2(k-1)} \frac{x}{2} \Big|_\alpha^\beta + \bigcup _{i,j=0,i\neq j}^{n}a^{i+j} \Big| \frac{0} {2\pi (b^j -b^i) (b^j + b^i)} \Big|_\alpha^\beta ] =$
$ \pi[ \displaystyle\sum_{k= 1}^{n+1} a^{2(k-1)} \frac{x}{2} \Big|_\alpha^\beta + \bigcup _{i,j=0,i\neq j}^{n}a^{i+j}0 ] = \pi[ \displaystyle\sum_{k= 1}^{n+1} a^{2(k-1)} \frac{x}{2} \Big|_\alpha^\beta + 0] =$
$ \pi[ \displaystyle\sum_{k= 1}^{n+1} a^{2(k-1)} \frac{x}{2} \Big|_\alpha^\beta] = \pi \displaystyle\sum_{k= 1}^{n+1} a^{2(k-1)} \frac{x}{2} \Big|_\alpha^\beta $
Thus $V_{w(x)_n} = \pi\displaystyle\int_{\alpha}^{\beta} (w(x)_n)^2dx = \pi\displaystyle\int_{\alpha}^{\beta} (\displaystyle\sum_{k= 0}^{n} a^k\cos(b^k\pi x) )^2dx = \pi \displaystyle\sum_{k= 1}^{n+1} a^{2(k-1)} \frac{x}{2} \Big|_\alpha^\beta, \alpha,\beta \in \mathbb{Z} $
Can this be "extended" to $w(x)$?