Let be $a,b,u,v$ integers and $au+bv=1$. I have to find integers $t,z$ satisfying $(a+b)z+abt=1$.
I think I can solve it by congruence. What do you think?
I realised $$bz\equiv 1 \quad (\text{mod}\, a)\Longrightarrow z\equiv v \quad (\text{mod}\, a)$$
$$az\equiv 1 \quad (\text{mod}\, b)\Longrightarrow z\equiv u \quad (\text{mod}\, b)$$
Any ideas? Thank you.