Using Prove that $\cos (A + B)\cos (A - B) = {\cos ^2}A - {\sin ^2}B$
$\displaystyle\cos^210^\circ+\cos^250^\circ=\cos^210^\circ-\sin^250^\circ+1=\cos60^\circ\cos40^\circ+1=\frac{\cos40^\circ}2+1$
Use Werner Formulas to find $\displaystyle2\sin40^\circ\sin80^\circ=\cos40^\circ-\cos120^\circ$
Now, $\displaystyle\cos120^\circ=\cos(180^\circ-60^\circ)=-\cos60^\circ=-\frac12$
Can you take it home from here?
Alternatively, $\displaystyle\cos^210^\circ+\cos^250^\circ-\sin40^\circ\sin80^\circ=\cos^210^\circ+\cos^250^\circ-\cos50^\circ\cos10^\circ$
$\displaystyle=\left(\cos10^\circ-\cos50^\circ\right)^2+\cos50^\circ\cos10^\circ$
Using Prosthaphaeresis Formulas, $\displaystyle\cos10^\circ-\cos50^\circ=2\sin30^\circ\sin20^\circ=\sin20^\circ$
Now use Double-Angle Formulas i.e., $\displaystyle\sin^2x=\frac{1-\cos2x}2$ for $x=20^\circ$
Using Werner Formulas, $\displaystyle2\cos50^\circ\cos10^\circ=\cos40^\circ+\cos60^\circ$