"There does not exist an uncountable subset of the real numbers which can not be expressed as the union of two uncountable sets which are disjoint from one another" is obviously true assuming choice. However, I'm looking for a proof of this statement that does not involve choice. I believe I have come up with one myself, but it's a little complicated. Is there any easy way to go about this?
1 Answers
Let $x\in\mathbb{R}$. Define $$S_{\leq x}=S~\cap~(-\infty,x]~~~\mathrm{and}~~~S_{>x}=S~\cap~ (x,+\infty)$$ and define $S_{\leq}=\{$ the set of all $x$ such that $S_{\leq x}$ is uncountable $\}$, and $S_>=\{$ the set of all $x$ such that $S_{>x}$ is uncountable $\}$.
$S_{\leq}$ is a non empty$^{(*)}$ interval that extends to infinity on the right, and is therefore of the form $[a,+\infty)$ or $(a,+\infty)$ for some $a\in\mathbb{R}$ or is equal to the whole of $\mathbb{R}$.
Similarly, $S_>$ is a non empty$^{(*)}$ interval that extends to infinity on the left, and is thus of the form $(-\infty,b]$ or $(-\infty,b)$ for some $b\in\mathbb{R}$ or is equal to the whole of $\mathbb{R}$.
$^{(*)}$ : I have used some form of choice I believe when I say that $S_>$ and $S_{\leq}$ are non empty, because I use the fact that with some form of choice, the countable union of countable sets is still countable. Is it countable choice? Since $$S=\cup_{n\in\mathbb{N}}S_{\leq n}$$ is uncountable, at least one of the $S_{<n}$ must be uncountable, and so for some natural number $n$ you have $n\in S_{<}\neq\emptyset$.
Let's show that $S_>\cap S_{\leq}$ is non empty. If either one of $S_>$ or $S_{\leq}$ is the whole real line, there is no problem. So let's suppose none of them is the whole of $\mathbb{R}$.
Suppose $x\in S_{\leq}$ that is $S_{\leq x}=S~\cap~(-\infty,x]$ is uncountable. Since $$\bigcup_{n\in\mathbb{N}^*}S_{\leq x-\frac{1}{n}}\subset S_{\leq x}=S~\cap~(-\infty,x]\subset \{x\}\cup \bigcup_{n\in\mathbb{N}^*}S_{\leq x-\frac{1}{n}}$$ the already used fact that countable unions of countable sets are countable with some form of choice implies that at least one of the $S_{\leq x -\frac{1}{n}}$ is uncountable, which means that for some $n\in\mathbb{N}^*,~x -\frac{1}{n}\in L$ and thus $S_{\leq}$ is open, that is, $$\mathbf{S_{\leq}=(b,+\infty)}$$ for some real number $b$. Similarly, $$\mathbf{S_{>}=(-\infty,a)}$$ for some real number $a$.
Then $S_>\cap S_{\leq}$ is empty iff $a\leq b$. But this would entail that $$S=S_{\leq a}\cup S_{> a}$$ is countable as the union of two countable sets, since $a \notin (-\infty,a)=S_{\leq}$ means $S_{\leq a}$ is countable, and $a \notin (b,+\infty)=S_{>}$ means $S_{> a}$ countable.

- 20,248
-
1You’ve definitely used some form of choice, because there are models in which $\mathbb{R}$ is a countable union of countable sets. – Brian M. Scott Oct 06 '11 at 05:00
-
2After further investigation: you’ve used CUT($\mathbb{R}$) (countable unions of countable subsets of $\mathbb{R}$ are countable), which is strictly weaker than CC($\mathbb{R}$) (axiom of countable choice for subsets of $\mathbb{R}$), which is strictly weaker than CC (every countable family of non-empty sets has a choice function). – Brian M. Scott Oct 06 '11 at 05:09
-
@Brian M. Scott yes. What does 'CUT' stand for? 'C'ountable 'U'nion ... ? – Olivier Bégassat Oct 06 '11 at 05:33
-
Countable Union Theorem. I don’t know how widely used the name and abbreviation are; I took them from Herrlich’s Axiom of Choice (Springer Lecture Notes in Mathematics). – Brian M. Scott Oct 06 '11 at 05:52
Also Olivier, are you not assuming choice using that argument? Aren't you associating a set with every element x in R?
– six Oct 06 '11 at 03:36I think I see what you're saying though. I suppose the only Ultrafilters that I can define without choice are the fixed ones. Which in that case, my proof isn't going to work without choice. Thanks for the help.
– six Oct 06 '11 at 04:41