3

Find the sum $$\sum_{n=1}^{\infty}\dfrac{1}{n(n+1)(n+2)(n+3)\cdots(n+2014)}$$

My idea: since $$\dfrac{1}{n(n+1)(n+2)\cdots(n+2014)}=\dfrac{1}{2014}\left(\dfrac{1}{n(n+1)(n+2)\cdots(n+2013)}-\dfrac{1}{(n+1)(n+2)\cdots(n+2014)}\right)?$$

math110
  • 93,304

2 Answers2

3

Hint

The telescoping sum is useful $$\dfrac{1}{n(n+1)(n+2)(n+3)\cdots(n+2014)}=\frac1{2014}\dfrac{(n+2014)-n}{n(n+1)(n+2)(n+3)\cdots(n+2014)}=\frac 1{2014}\left(\dfrac{1}{n(n+1)(n+2)(n+3)\cdots(n+2013)}-\dfrac{1}{(n+1)(n+2)(n+3)\cdots(n+2014)}\right)$$

0

Just by curiosity, I used a CAS for the computation of $$S(m)=\sum_{n=1}^{\infty}\dfrac{1}{n(n+1)(n+2)(n+3)\cdots(n+m)}$$ The first result was quite amazing $$S(m)=\frac{\Gamma (m) \Gamma (m+2)}{(2)_m \Gamma (m+1)^2}$$ where appear Pochhammer numbers. Fortunately, this simplifies to $$S(m)=\frac{1}{m^2 \Gamma (m)}$$ which is a quite nice closed form.