I'm teaching a group theory course now, and I wanted to give my students a proof that every subgroup of a cyclic group is cyclic. The easiest way I could think to do this is to say that any cyclic group corresponds to a $\mathbb{Z}/n\mathbb{Z}$ and then (implicitly) use the first isomorphism theorem (which they haven't learned yet) to "reduce" it to the theorem that every subgroup of $\mathbb{Z}$ is of the form $m\mathbb{Z}$. The problem is that this latest statement is not simple at all (every subgroup is an ideal, and $\mathbb{Z}$ is a PID because $\mathbb{Z}$ is Euclidean).
This all seems way too convoluted for such an easy statement. What's the simplest most elementary proof that I can give?