Let $\mu_n$ be the $n$-dimensional Lebesgue measure.
Let $||\cdot||$ be a norm on $\mathbb{R}^n$.
Define $S^{n-1}=\{x\in\mathbb{R}:||x||=1\}$.
I have proven that $\forall A\in\mathscr{B}_{S^{n-1}}, (0,1]A\in \mathscr{B}_{\mathbb{R}^n}$. ($\mathscr{B}$ denotes the Borel-algebra and $(0,1]A$ is defined as $\{rb:r\in(0,1] , b\in A\}$)
Define $\sigma(A)=n\mu_n((0,1]A), \forall A\in\mathscr{B}_{S^{n-1}}$
Then, $\sigma$ is a measure.
Is this "the surface measure" or the completion of $\sigma$ the surface measure?