3

Could we prove:

$ \sum_{k} \binom{2k}{k}\binom{n+k}{m+2k} \frac{(-1)^k}{k+1} = \binom{n-1}{m-1}$ when $m,n \in N$

cinvro
  • 329

3 Answers3

2

When $n=1$ it's easy to evaluate for all $m\ge1$. Then it's easy to prove the $n+1$ by induction, given the $n$ case (for all $m$): just write $$ \binom{n+k}{m+2k} = \binom{n-1+k}{m+2k} + \binom{n-1+k}{m-1+2k}. $$

Greg Martin
  • 78,820
  • Pretty helpful! Could you tell me what's the value of $\binom{x}{y}$ if $x<y$ ? – cinvro Mar 03 '14 at 07:47
  • 1
    @cinvro: Zero. For a nonnegative integer $y$ and any arbitrary (e.g. complex number) $x$, the expression $\binom{x}{y}$ is defined as $\dfrac{x(x-1)\cdots(x-y+1)}{y!}$. When $0 \le x < y$ (and $x$ is an integer), this becomes $0$, because of the factor $(x-x)$ in the numerator. – ShreevatsaR Mar 03 '14 at 09:35
2

The generating function for the Central Binomial Coefficients is $$ \sum_{k=0}^\infty\binom{2k}{k}x^k=(1-4x)^{-1/2}\tag{1} $$ Integrating $(1)$ and dividing by $x$ yields $$ \sum_{k=0}^\infty\binom{2k}{k}\frac{x^k}{k+1}=\frac{1-\sqrt{1-4x}}{2x}\tag{2} $$ Sum the formula against $x^m$: $$ \begin{align} &\sum_{m=-\infty}^n\left(\sum_{k=0}^{n-m}\binom{2k}{k}\binom{n+k}{m+2k}\frac{(-1)^k}{k+1}\right)x^m\tag{3}\\ &=\sum_{k=0}^\infty\sum_{m=-2k}^{n-k}\binom{2k}{k}\binom{n+k}{m+2k}\frac{(-1)^k}{k+1}x^m\tag{4}\\ &=\sum_{k=0}^\infty x^{-2k}\sum_{m=0}^{n+k}\binom{2k}{k}\binom{n+k}{m}\frac{(-1)^k}{k+1}x^m\tag{5}\\ &=\sum_{k=0}^\infty x^{-2k}\binom{2k}{k}\frac{(-1)^k}{k+1}(x+1)^{n+k}\tag{6}\\ &=(x+1)^n\sum_{k=0}^\infty\binom{2k}{k}\frac{(-1)^k}{k+1}\left(\frac{x+1}{x^2}\right)^{k}\tag{7}\\ &=(x+1)^n\frac{-1+\sqrt{1+4\frac{x+1}{x^2}}}{2\frac{x+1}{x^2}}\tag{8}\\ &=x(x+1)^{n-1}\frac{-x+(x+2)}{2}\tag{9}\\[9pt] &=x(x+1)^{n-1}\tag{10}\\[6pt] &=\sum_{m=1}^n\binom{n-1}{m-1}x^m\tag{11} \end{align} $$ Justification:
$\:\ (3)$: sum against $x^m$
$\:\ (4)$: change order of summation
$\:\ (5)$: substitute $m\mapsto m-2k$
$\:\ (6)$: apply the Binomial Theorem
$\:\ (7)$: reorganize
$\:\ (8)$: apply $(2)$
$\:\ (9)$: simplify
$(10)$: simplify
$(11)$: apply the Binomial Theorem

Equating coefficients of $x^m$ yields $$ \sum_{k=0}^{n-m}\binom{2k}{k}\binom{n+k}{m+2k}\frac{(-1)^k}{k+1}=\binom{n-1}{m-1}\tag{12} $$


Note that the sum has non-zero terms for $m\lt1$, but these cancel; e.g. $n=3,m=-1$: $$ \begin{align} &\binom{0}{0}\binom{3}{-1}\frac11-\binom{2}{1}\binom{4}{1}\frac12+\binom{4}{2}\binom{5}{3}\frac13-\binom{6}{3}\binom{6}{5}\frac14+\binom{8}{4}\binom{7}{7}\frac15\\[6pt] &=0-4+20-30+14\\[9pt] &=0 \end{align} $$

robjohn
  • 345,667
  • Thank you for the answer. But I don't quite understand how you get equation(2). And I am not sure how you get $\sum_{k=0}^\infty x^{-2k}$ in the sum too. Can you explain them a lithe bit? – cinvro Mar 05 '14 at 02:12
  • Oh I figured out the second question I put above. – cinvro Mar 05 '14 at 02:17
  • 1
    @cinvro: Equation $(2)$ follows by integrating both sides of $(1)$ and dividing by $x$. The left side is computed term by term, the right side by finding the anti-derivative. – robjohn Mar 05 '14 at 03:36
  • I'm still a little bit confused by (4). After change order of summation, why the lower bound of $m$ is $-2k$? and upper bound is $n-k$? – cinvro Mar 05 '14 at 03:41
  • And when you compare (3) and (11) to say that (12) holds. I don't get it since (3) has summation with $m$ from $-\infty$ to $n$, but (11) only has summation with $m$ from $1$ to $n$ – cinvro Mar 05 '14 at 03:44
  • @cinvro: "I'm still a little bit confused by (4)." Actually $$\sum_{m=-\infty}^n\sum_{k=0}^{n-m}\mapsto\sum_{k=0}^\infty\sum_{m=-\infty}^{n-k}$$ However, if $m\lt-2k$, we would have $\binom{n+k}{m+2k}=0$. Therefore, I limited $m\ge-2k$. – robjohn Mar 05 '14 at 13:34
  • @cinvro: "And when you compare (3) and (11) to say that (12) holds." As I said later, that the terms with $m\lt1$ vanish means that the sums with $m\lt1$ cancel. I show an example with $n=3$ and $m=-1$. – robjohn Mar 05 '14 at 13:40
1

Here is a similar approach using basic complex variables. Suppose we seek to evaluate $$\sum_{k\ge 0} {2k\choose k} {n+k\choose m+2k} \frac{(-1)^k}{k+1}$$ where $n\ge m.$

Introduce the integral representation $${n+k\choose m+2k} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{m+2k+1}} (1+z)^{n+k} \; dz.$$

This yields the following integral for the sum: $$\frac{1}{2\pi i} \int_{|z|=\epsilon} \sum_{k\ge 0} {2k\choose k} \frac{(-1)^k}{k+1} \frac{1}{z^{m+2k+1}} (1+z)^{n+k} \; dz \\= \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^n}{z^{m+1}} \sum_{k\ge 0} {2k\choose k} \frac{(-1)^k}{k+1} \frac{(1+z)^k}{z^{2k}} \; dz.$$

Now the OGF of the Catalan numbers is $$\sum_{k\ge 0} {2k\choose k} \frac{1}{k+1} w^k = \frac{1-\sqrt{1-4w}}{2w}.$$ Substituting this closed form that we computed into the integral yields

$$\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^n}{z^{m+1}} \frac{1-\sqrt{1+4(1+z)/z^2}}{(-1)\times 2(1+z)/z^2} \; dz \\= - \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^n}{z^{m-1}} \frac{1-\sqrt{1+4(1+z)/z^2}}{2(1+z)} \; dz \\= - \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^n}{z^m} \frac{z-\sqrt{z^2+4(1+z)}}{2(1+z)} \; dz.$$

Observe that $z^2+4(1+z) = (z+2)^2$ so the integral becomes $$- \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^n}{z^m} \frac{z-(z+2)}{2(1+z)} \; dz \\ = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{n-1}}{z^m} \; dz.$$

This last integral can be evaluated by inspection and yields $$[z^{m-1}] (1+z)^{n-1} = {n-1\choose m-1}.$$

Note that for the convergence of the Catalan GF series we require $|(1+z)/z^2|\lt 1/4$ (distance to the nearest singularity). Now $|(1+z)/z^2|\le (1+\epsilon)/\epsilon^2$ so we may take $\epsilon = N \ge 5.$

Remark: the same functions appear here as in @robjohn's answer, who was first.

A trace as to when this method appeared on MSE and by whom starts at this MSE link.

Marko Riedel
  • 61,317