$2\sqrt{x} + \sqrt{3}$
How do I simplify this?
$2\sqrt{x} + \sqrt{3}$
How do I simplify this?
This seems a simpler derivation to me:
Squaring $a \sqrt x + \sqrt b$ we get $a^2 x + b + 2a \sqrt{bx}$ so $$ a \sqrt x + \sqrt b = \sqrt{a^2 x + b + 2a \sqrt{bx}}. $$
This seems to be a more complicated result to me.
I know, it's all about me.
Maybe you are searching for something similar to this:
$$\sqrt{a{^+ _-}\sqrt{b}}=\sqrt{\frac{a+c}{2}}{^+ _-}\sqrt{\frac{a-c}{2}}$$
$$c=\sqrt{a^2-b}$$
A example:
$\sqrt{5{^+_-}\sqrt{24}}=\sqrt{\frac{5+1}{2}}{^+_-}\sqrt{\frac{5-1}{2}}=\sqrt{3}{^+_-}\sqrt{2}$
In your problem:
$2\sqrt{x}+\sqrt{3}=\sqrt{3}+\sqrt{4x}$
$a+c=2\times3$
$a-c=2\times4x$
So,
$a=4x+3$
$c=3-4x$
$b=a^2-c^2=(a-c)(a+c)=8x\times6=48x=3x\times4^2$
The final is:
$$2\sqrt{x}+\sqrt{3}=\sqrt{4x+3+4\sqrt{3x}}$$
But it needs a better investigation of the existence conditions in these calculus.