Not elegant, but here is a direct approach to showing this is not true. Let $x=\sqrt{3+\sqrt{2}}$. Since $\{1,x,x^2,x^3\}$ is a basis for $\mathbb{Q}[x]$, then so is $$\{1,\sqrt{3+\sqrt{2}},\sqrt{2},\sqrt{6+2\sqrt{2}}\}$$
Suppose $$\sqrt{3-\sqrt{2}}=a+b\sqrt{3+\sqrt{2}}+c\sqrt{2}+d\sqrt{6+2\sqrt{2}}$$ with $a,b,c,d\in\mathbb{Q}$. Then squaring:
$$\begin{align}
3-\sqrt{2}
&=a^2+b^2(3+\sqrt{2})+2c^2+d^2(6+2\sqrt{2})\\
&\phantom{{}={}}+2ab\sqrt{3+\sqrt{2}}+2ac\sqrt{2}+2ad\sqrt{6+2\sqrt{2}}\\
&\phantom{{}={}}+2bc\sqrt{6+2\sqrt{2}}+2bd(3+\sqrt{2})\sqrt{2}+4cd\sqrt{3+\sqrt{2}}\\
3-\sqrt{2}&=(a^2+3b^2+2c^2+6d^2+4bd)\\
&\phantom{{}={}}+(b^2+2d^2+2ac+6bd)\sqrt{2}\\
&\phantom{{}={}}+(2ab+4cd)\sqrt{3+\sqrt{2}}\\
&\phantom{{}={}}+(2ad+2bc)\sqrt{6+2\sqrt{2}}
\end{align}$$
From the latter two coefficients:
$$
\left\{\begin{aligned}
ab&=-2cd\\
ad&=-bc
\end{aligned}\right.
\implies
\left\{\begin{aligned}
abd&=-2cd^2\\
ad&=-bc
\end{aligned}\right.
\implies
\left\{\begin{aligned}
-b^2c&=-2cd^2\\
ad&=-bc
\end{aligned}\right.
$$
The top equation tells us either (1) $b^2=2d^2$ or (2) $c=0$. (1) is only possible if $b=d=0$, which would mean $\sqrt{3-\sqrt{2}}=a+c\sqrt{2}$, which would quickly lead to a contradiction. So if $c=0$:
$$\begin{align}
3-\sqrt{2}&=(a^2+3b^2+6d^2+4bd)\\
&\phantom{{}={}}+(b^2+2d^2+6bd)\sqrt{2}\\
&\phantom{{}={}}+(2ab)\sqrt{3+\sqrt{2}}\\
&\phantom{{}={}}+(2ad)\sqrt{6+2\sqrt{2}}
\end{align}$$
Again looking at the last two coefficients, either (1) $b=d=0$ or (3) $a=0$. (1) has already been ruled out. So $a=0$, and:
$$\begin{align}
3-\sqrt{2}&=(3b^2+6d^2+4bd)\\
&\phantom{{}={}}+(b^2+2d^2+6bd)\sqrt{2}
\end{align}$$
So
$$
\left\{\begin{aligned}
3&=3b^2+6d^2+4bd\\
-1&=b^2+2d^2+6bd
\end{aligned}\right.
\implies
\left\{\begin{aligned}
3&=3b^2+6d^2+4bd\\
-3&=3b^2+6d^2+18bd
\end{aligned}\right.
$$
Subtracting equations:
$$\begin{align}
6&=-14bd\\
-\frac{3}{7}&=bd
\end{align}$$
And lastly, using relations from above:
$$
\begin{align}
-1&=b^2+2d^2+6\left(-\frac{3}{7}\right)\\
\frac{11}{7}&=b^2+2d^2\\
11&=7b^2+14d^2\\
11b^2&=7b^4+14b^2d^2\\
11b^2&=7b^4-6\\
0&=7b^4-11b^2-6\\
0&=(7b^2+3)(b^2-2)\\
\end{align}$$
And it's clear there is no such $b$ in $\mathbb{Q}$.