1

Problem.

Evaluate the limit $$\lim_{x \to 0^+} x \ln(x)$$

I split the limit up in a product of $x$ and $\ln(x)$ and get $0 \cdot -\infty$ which sounds a bit shady...Can I simply say that this is obviously $0$ because $0 \cdot a = 0, \forall a \in \mathbb{R}$...?

Anonymous Pi
  • 1,297
user3200098
  • 1,227

5 Answers5

6

Hint: $$ \lim_{x \to 0^+} x\ln(x) =\lim_{x \to 0^+} \frac{\ln(x)}{1/x} $$

Ben Grossmann
  • 225,327
6

Another way to think about it: let $x=e^{-t}$; then the limit becomes:

$$\lim_{t\to \infty}\;\; -t \, e^{-t}$$

Maybe that's clearer.

Ron Gordon
  • 138,521
3

As shown in this answer, for all $x\in\mathbb{R}$, $$ x\lt1+x\le e^x\tag{1} $$ If $u\gt0$, applying $(1)$ to $u/2$ and squaring gives $$ u^2/4\lt e^u\tag{2} $$ Multiplying $(2)$ by $\dfrac4{ue^u}$ yields $$ 0\lt\frac{u}{e^u}\lt\frac4u\tag{3} $$ Thus, applying $(3)$ and the Squeeze Theorem, $$ \begin{align} \lim_{x\to0^+}x\log(x) &=\lim_{x\to0^+}\log(x)e^{\log(x)}\\ &=\lim_{u\to\infty}-ue^{-u}\\ &=-\lim_{u\to\infty}\frac{u}{e^u}\\[3pt] &=0\tag{4} \end{align} $$

robjohn
  • 345,667
2

$$\lim_{x\to 0} x\log x=\lim_{x\to 0}\frac{\log x}{\frac1x}\stackrel{l\,'H}=\lim_{x\to 0}\frac{\frac1x}{-\frac1{x^2}}=\ldots$$

DonAntonio
  • 211,718
  • 17
  • 136
  • 287
1

Set $t=\frac{1}{x}$, then

$$\lim_{x \to 0^+} x \ln(x)=\lim_{t\rightarrow +\infty}\frac{\log(\frac{1}{t})}{t}=\lim_{t\rightarrow +\infty}\frac{-\log(t)}{t}=0.$$

alex
  • 795