Using mathematical induction I am to prove:
$ \left( \begin{array}{ccc} 1 & 1 \\ 1 & 0 \end{array} \right)^n $ = $ \left( \begin{array}{ccc} F_{n+1} & F_n \\ F_n & F_{n-1} \end{array} \right) $
where $F_k$ represents the $k^{th}$ Fibonacci number.
my base case is $n =2$
LHS: $ \left( \begin{array}{ccc} 1 & 1 \\ 1 & 0 \end{array} \right) \times$ $ \left( \begin{array}{ccc} 1 & 1 \\ 1 & 0 \end{array} \right) $$=$ $ \left( \begin{array}{ccc} 2 & 1 \\ 1 & 1 \end{array} \right) $
RHS: $ \left( \begin{array}{ccc} F_3 & F_2 \\ F_2 & F_1 \end{array} \right) $$=$ $ \left( \begin{array}{ccc} 2 & 1 \\ 1 & 1 \end{array} \right) $
So $n = k + 1$
$ \left( \begin{array}{ccc} F_{k+2} & F_{k+1} \\ F_{k+1} & F_k \end{array} \right) $
So for my inductive step I did:
$ \left( \begin{array}{ccc} F_{k+1} & F_k \\ F_k & F_{k-1} \end{array} \right) $ $+$ $ \left( \begin{array}{ccc} 1 & 1 \\ 1 & 0 \end{array} \right)^{k+1} $
And now I'm not sure where to proceed from here. Can anyone point me in the right direction? Assuming my previous work is correct.