Well, as an alternative (and I promise, none of the dreaded complex analysis stuff), we could use Parseval's theorem for Fourier transforms:
For example, the FT of $(\sin{x}/x)^2$ is
$$\int_{-\infty}^{\infty} dx \: \frac{\sin^2{x}}{x^2} e^{i k x} = \begin{cases} \\\pi \left (1 - \frac{|k|}{2} \right ) & |k| \le 2 \\ 0 & |k| > 2 \end{cases}$$
The FT of $1/(1+x^2)$ is
$$\int_{-\infty}^{\infty} dx \: \frac1{1+x^2} e^{i k x} = \pi \, e^{-|k|}$$
By Parseval's theorem,
$$\begin{align}\int_0^{\infty} dx \: \frac{\sin^2{x}}{x^2} \frac1{1+x^2} &= \frac{\pi}{2} \int_0^2 dk \, \left (1 - \frac{k}{2} \right ) e^{-k}\\ &= \frac{\pi}{2} \left (1-e^{-2}- \frac12 (1-3 e^{-2}) \right )\\ &= \frac{\pi}{4} \left (1+\frac1{e^2} \right )\end{align}$$