I wish to integrate $$\int_{-a}^a \frac{dx}{1+e^x}.$$ By symmetry, the above is equal to $$\int_{-a}^a \frac{dx}{1+e^{-x}}$$ Now multiply by $e^x/e^x$ to get $$\int_{-a}^a \frac{e^x}{1+e^x} dx$$ which integrates to $$\log(1+e^x) |^a_{-a} = \log((1+e^a)/(1+e^{-a})),$$ which is not correct. According to Wolfram, we should get $$2a + \log((1+e^{-a})/(1+e^a)).$$ Where is the mistake?
EDIT: Mistake found: was using log on calculator, which is base 10.