I'm to prove that $(A^T)^{-1} = (A^{-1})^T$ but I'm not really getting anywhere.
What I've got so far:
$\frac{1}{detA} \cdot A^T = \left( \frac{1}{detA} \cdot A \right) ^T$
But that gets me nowhere...Any hints appreciated.
I'm to prove that $(A^T)^{-1} = (A^{-1})^T$ but I'm not really getting anywhere.
What I've got so far:
$\frac{1}{detA} \cdot A^T = \left( \frac{1}{detA} \cdot A \right) ^T$
But that gets me nowhere...Any hints appreciated.
Notice that $$(AB)^T=B^TA^T$$ we have $$I_n=(AA^{-1})^T=(A^{-1})^TA^T$$ so $$(A^T)^{-1}=(A^{-1})^T$$