$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Leftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\, #2 \,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
Lets $\ds{\mathcal{R} \equiv \braces{r}}$ the set of simple poles of $\ds{\pars{z^{4} + z^{2} + 1}^{-1}}$. Then,
\begin{align}
{k \over k^{4} + k^{2} + 1} & =
\sum_{r \in \mathcal{R}}{1 \over 4r^{3} + 2r}{k \over k - r}\ =\
\overbrace{\sum_{r \in \mathcal{R}}{1 \over 4r^{3} + 2r}}^{\ds{=\ 0}}\
+\
\sum_{r \in \mathcal{R}}{r \over 4r^{3} + 2r}{1 \over k - r}
\end{align}
\begin{align}
\color{#f00}{\sum_{k = 1}^{n}{k \over k^{4} + k^{2} + 1}} & =
\sum_{r \in \mathcal{R}}{r \over 4r^{3} + 2r}
\sum_{k = 0}^{n - 1}{1 \over k + 1 - r}\tag{1}
\end{align}
Also
\begin{align}
\sum_{k = 0}^{n - 1}{1 \over k + 1 - r} & =
\sum_{k = 0}^{\infty}\pars{{1 \over k + 1 - r} - {1 \over k + n + 1 - r}}
\\[3mm] & =
n\sum_{k = 0}^{\infty}{1 \over \pars{k + n + 1 - r}\pars{k + 1 - r}} =
\Psi\pars{n + 1 - r} - \Psi\pars{1 - r}
\end{align}
where $\Psi$ is the
Digamma function and we used a
well known identity.
Then $\ds{\pars{~see\ expression\ \pars{1}~}}$
$$
\color{#f00}{\sum_{k = 1}^{n}{k \over k^{4} + k^{2} + 1}} =
\color{#f00}{\sum_{r \in \mathcal{R}}{r \over 4r^{3} + 2r}
\bracks{\Psi\pars{n + 1 - r} - \Psi\pars{1 - r}}}
$$
Note that the final result is expressed as a finite sum which only has four terms.