Using the Extended Euclidean Algorithm
$$\begin{array}{rrr}
17369 & 1 & 0\\
5472 & 0 & 1\\
953 & 1 & -3\\
-246 & -6 & 19\\
-31 & -23& 73\\
2 & \color{#c00}{178} & \color{#0a0}{-565}\\
\end{array}$$
where each above line $\,\ a\ \ b\ \ c\ \,$ means that $\ a = 17369\, b + 5472\, c.\ $ Therefore
$$ 2 \,=\, 17369\cdot \color{#c00}{178}+ 5472(\color{#0a0}{-565})\quad $$
Multiplying the above by $\,2\,$ yields the sought integers $\,x,y.$
The linked post described the algorithm in great detail, in a way that is easy to remember.
Here is another example computing $\rm\ gcd(141,19),\,$ with the equations written explicitly
$$\rm\begin{eqnarray}(1)\quad \color{#C00}{141}\!\ &=&\,\ \ \ 1&\cdot& 141\, +\ 0&\cdot& 19 \\
(2)\quad\ \color{#C00}{19}\ &=&\,\ \ \ 0&\cdot& 141\, +\ 1&\cdot& 19 \\
\color{#940}{(1)-7\,(2)}\, \rightarrow\, (3)\quad\ \ \ \color{#C00}{ 8}\ &=&\,\ \ \ 1&\cdot& 141\, -\ 7&\cdot& 19 \\
\color{#940}{(2)-2\,(3)}\,\rightarrow\,(4)\quad\ \ \ \color{#C00}{3}\ &=&\, {-}2&\cdot& 141\, + 15&\cdot& 19 \\
\color{#940}{(3)-3\,(4)}\,\rightarrow\,(5)\quad \color{#C00}{{-}1}\ &=&\,\ \ \ 7&\cdot& 141\, -\color{#0A0}{ 52}&\cdot& \color{#0A0}{19} \end{eqnarray}\qquad$$