Algebraically (mentioned by t.b.): The columns of the matrix are $b_1\mathbf{a}$, $b_2\mathbf{a}$, $\dots, b_n\mathbf{a}$. If all of $\mathbf{b}$'s components are zero then the result is trivial, while if at least one of the components is nonzero, say $b_1$ without loss of generality, then (for $n>1$)
$$\color{Blue}{-(b_2+b_3+\cdots+b_n)}(b_1\mathbf{a})+\color{Blue}{b_1}(b_2\mathbf{a})+\color{Blue}{b_1}(b_3\mathbf{a})+\cdots+\color{Blue}{b_1}(b_n\mathbf{a})$$
$$=\big((\color{Blue}{-b_2}b_1+\color{Blue}{b_1}b_2)+(\color{Blue}{-b_3}b_1+\color{Blue}{b_1}b_3)\cdots+(\color{Blue}{-b_n}b_1+\color{Blue}{b_1}b_n)\big)\mathbf{a}$$ $$=(0+0+\cdots+0)\mathbf{a}=\mathbf{0}.$$ is a nontrivial linear combination of the matrix columns that evaluates to zero, hence the columns are linearly dependent and thus the matrix's determinant is zero.
Shortcut (via David): Use the multlinearity of the determinant to reduce $$\det\begin{pmatrix}b_1\mathbf{a}&b_2\mathbf{a}&\cdots&b_n\mathbf{a}\end{pmatrix}=b_1b_2\cdots b_n \det\begin{pmatrix}\mathbf{a}&\mathbf{a}&\cdots&\mathbf{a}\end{pmatrix}.$$ For $n>1$, it is impossible for $n$ copies of a vector $\mathbf{a}$ to be linearly independent, since e.g. $$1\mathbf{a}+(-1)\mathbf{a}+0\mathbf{a}+\cdots+0\mathbf{a}=\mathbf{0}.$$ Hence the original determinant must also be zero.
Geometrically: The parallelepiped formed by the matrix's columns are all contained in the one-dimensional subspace generated by $\mathbf{a}$: for $n>1$ this has zero $n$-dimensional content (hyper-volume), hence the determinant is zero.
Geometrically/Algebraically: As I posted in a different answer (paraphrased here),
We're assuming $\mathbf{a},\mathbf{b}\ne\mathbf{0}$. Then $\mathbf{b}^\perp$, the orthogonal complement of the linear subspace generated by $\mathbf{b}$ (i.e. the set of all vectors orthogonal to $\mathbf{b}$) is therefore $(n-1)$-dimensional. Let $\mathbf{c}_1,\dots,\mathbf{c}_{n-1}$ be a basis for this space. Then they are linearly independent and $$(\mathbf{a}\mathbf{b}^T)\mathbf{c}_i =\mathbf{a}(\mathbf{b}^T\mathbf{c}_i)= (\mathbf{b}\cdot\mathbf{c}_i)\mathbf{a}=\mathbf{0}.$$ Thus the eigenvalue $0$ has geometric multiplicity $n-1\qquad$ [...]
The determinant is the product of the matrix's eigenvalues, so if one of those is $0$ the product is necessarily zero as well.
Analytically/Combinatorially: Via Leibniz formula we have
$$\det(\mathbf{a}\mathbf{b}^T)=\sum_{\sigma\in S_n}(-1)^{\sigma}\prod_{k=1}^na_{\sigma(k)}b_k$$
$$=\left(\sum_{\sigma\in S_n}(-1)^\sigma\right)\prod_{k=1}^na_kb_k=0.$$
Above we observe that $\sum (-1)^{\sigma}$ is zero because the permutations of even and odd parity are in bijection with each other (e.g. take an arbitrary transposition $\tau$ and define the map $\sigma\to\tau\sigma$).