Consider the norms $||x||_1 = \sum_{i=1}^n |x_i|$ and $||x||_2 = \large(\sum_{i=1}^n |x_i|^2 \large) ^{\frac{1}{2}}$ induces the topology $\mathcal T_1 $ and $\mathcal{T_2}$ on $R^n$, the $n-$dimensional euclidean spaces ,then
1.$\mathcal T_1$ is weaker than $\mathcal T_2$
2.$\mathcal T_1$ is stronger than $\mathcal T_2$
3.$\mathcal T_1$ is equivalent to $\mathcal T_2$
4.$\mathcal T_1$ and $ \mathcal T_2$ are incomparable.
Intutively i think (3) is the answer, let x $\in X_1$ and its neighbourhood $B_r^1(x)\ \ in\ \ \mathcal T_1$ , there exist a ball $B_r^1(x) \ \ in \ \ \mathcal T_2$ such that x $\in B_r^2(x) \subseteq B_r^1$ so $\mathcal T_1$ is weaker than $\mathcal T_2$ . how th show that the converse part.