I played around with this using parts because it looks like an integral that involves polylogs. Many of these can be done with parts or multiple use of parts.
$$\int\frac{log(x)log(1+x)}{1+x}dx$$
Let $$u=x+1$$
$$\int\frac{log(u-1)log(u)}{u}du=\int\frac{log(u)}{u}\left(log(u)+log(1-1/u)\right)du$$
$$=\frac{log^{3}(u)}{3}+\int\frac{log(u)log(1-1/u)}{u}du$$
Now, use parts on this last integral:
$u=log(u), \;\ dv=\frac{log(1-1/u)}{u}, \;\ du=\frac{1}{u}du, \;\ v=Li_{2}(1/u)$
(as a note, $\int\frac{log(1-1/u)}{u}du=Li_{2}(1/u)$ is a rather famous integral related to the dilog).
$$\int\frac{log(u)log(1-1/u)}{u}du=log(u)Li_{2}(1/u)-\int\frac{Li_{2}(1/u)}{u}du$$
Also, note this last integral is simply $$-Li_{3}(1/u)$$
Now, back sub $u=x+1$, and put it altogether using the integration limits 0 to 1.
Hence, we arrive at:
$$ \left|1/3log^{3}(x+1)+log(x+1)Li_{2}\left(\frac{1}{x+1}\right)+Li_{3}\left(\frac{1}{1+x}\right)\right|_{0}^{1}$$
$$=1/3log^{3}(2)+log(2)Li_{2}(1/2)+Li_{3}(1/2)-Li_{3}(1).........(1)$$
Note the identities:
$$Li_{2}(1/2)=\frac{\pi^{2}}{12}-1/2log^{2}(2)$$
$$Li_{3}(1/2)=7/8\zeta(3)+1/6log^{3}(2)-\frac{\pi^{2}}{12}log(2)$$
sum up (1):
$$1/3log^{3}(2)+log(2)\left(\frac{\pi^{2}}{12}-1/2log^{2}(2)\right)+\left(7/8\zeta(3)+1/6log^{3}(2)-\frac{\pi^{2}}{12}log(2)\right)-\zeta(3)$$
$$=\frac{-\zeta(3)}{8}$$