Suppose you have $T(0) = 0$ and $T(1) = 1$ and your recurrence for $n\ge 2$ is
$$T(n) = 2 T(\lfloor n/2 \rfloor) + \frac{n}{\lfloor\log_2 n\rfloor}.$$
This gives the following exact formula for $T(n)$ where $n\ge 2:$
$$T(n) = 2^{\lfloor \log_2 n \rfloor}
+ \sum_{j=0}^{\lfloor \log_2 n \rfloor - 1} \frac{1}{\lfloor \log_2 n \rfloor - j}
\sum_{k=j}^{\lfloor \log_2 n \rfloor} d_k 2^k$$
where we suppose that the binary representation of $n$ is
$$n = \sum_{k=0}^{\lfloor \log_2 n \rfloor} d_k 2^k.$$
The reader is invited to verify this formula which is not at all difficult.
Now for an upper bound consider a string of one digits which gives
$$T(n) \le 2^{\lfloor \log_2 n \rfloor}
+ \sum_{j=0}^{\lfloor \log_2 n \rfloor - 1} \frac{1}{\lfloor \log_2 n \rfloor - j}
\sum_{k=j}^{\lfloor \log_2 n \rfloor} 2^k
\\ = 2^{\lfloor \log_2 n \rfloor}
+ \sum_{j=0}^{\lfloor \log_2 n \rfloor - 1} \frac{1}{\lfloor \log_2 n \rfloor - j}
(2^{\lfloor \log_2 n \rfloor+1} - 2^j)
\\= 2^{\lfloor \log_2 n \rfloor}
+ 2^{\lfloor \log_2 n \rfloor+1}
\sum_{j=0}^{\lfloor \log_2 n \rfloor - 1} \frac{1}{\lfloor \log_2 n \rfloor - j}
- \sum_{j=0}^{\lfloor \log_2 n \rfloor - 1} \frac{2^j}{\lfloor \log_2 n \rfloor - j}
\\= 2^{\lfloor \log_2 n \rfloor}
+ 2^{\lfloor \log_2 n \rfloor+1} H_{\lfloor \log_2 n \rfloor}
- \sum_{j=1}^{\lfloor \log_2 n \rfloor} \frac{2^{\lfloor \log_2 n \rfloor - j}}{j}
\\= 2^{\lfloor \log_2 n \rfloor}
+ 2^{\lfloor \log_2 n \rfloor+1} H_{\lfloor \log_2 n \rfloor}
- 2^{\lfloor \log_2 n \rfloor} \sum_{j=1}^{\lfloor \log_2 n \rfloor} \frac{2^{- j}}{j}.$$
Observe that the remaining sum term converges to a number, so that we get the following asymptotics for the upper bound:
$$2^{\lfloor \log_2 n \rfloor} (1+2H_{\lfloor \log_2 n \rfloor} -\log 2).$$
This upper bound is actually attained and hence cannot be improved upon, just like the lower bound, which we now compute and which occurs for a one digit followed by a string of zero digits, giving
$$ T(n) \ge 2^{\lfloor \log_2 n \rfloor}
+ \sum_{j=0}^{\lfloor \log_2 n \rfloor - 1} \frac{1}{\lfloor \log_2 n \rfloor - j}
2^{\lfloor \log_2 n \rfloor}
= 2^{\lfloor \log_2 n \rfloor} (1+H_{\lfloor \log_2 n \rfloor}).$$
Joining the dominant terms of the upper and the lower bound we get a complexity of
$$\Theta\left(2^{\lfloor \log_2 n \rfloor} \times H_{\lfloor \log_2 n \rfloor}\right)
= \Theta\left(2^{\log_2 n} \log \log n\right)= \Theta\left(n\log \log n\right).$$
This MSE link points to a chain of similar computations.