1

How do I calculate $12345^{12345} \operatorname{mod} 17$? I cant do it on a calculator? How would I show this systematically?

3 Answers3

4

Hint: By Fermat's little theorem, if $c$ is a prime number, and $c$ don't divide $a$, $a^{c-1}\equiv 1 \mod c$

FranckN
  • 1,304
3

Hint: $$12345=17\cdot726+3=3\pmod{17}$$ Now, show/observe that $3^{16}=1\pmod{17},$ so since $12345=771\cdot16+9,$ then what can we conclude about $3^{12345},$ modulo $17$?

Cameron Buie
  • 102,994
0

This solution is without using Fermat Little theorem(in case anyone does not know)

$12345\hspace{1 mm} mod \hspace{1 mm}17$=3

So question simplifies to $3^ {12345}\hspace{1 mm} mod \hspace{1 mm}17$

$3^6\hspace{1 mm} mod \hspace{1 mm}17$=-2

So question simplifies to $-2^ {2057}*-2^3\hspace{1 mm} mod \hspace{1 mm}17$

$-2^4\hspace{1 mm} mod \hspace{1 mm}17$=-1

So question simplifies to $-1^ {514}*-2^3*-2\hspace{1 mm} mod \hspace{1 mm}17$=-1

happymath
  • 6,148