Solve the equation $285x \equiv 177 \pmod{924}$ using continued fraction
My attempt(using Wikipedia notion):
Continued fraction form for $\frac{924}{285}$ is $[3;4,6,1,9]=[q_1;q_2,q_3,q_4,q_5]$
$\frac{924}{285}=\frac{h_n}{k_n}$
We know that $h_nk_{n-1}-h_{n-1}k_n=(-1)^n \Rightarrow$$924k_{5-1}-285h_{5-1}=(-1)^5$.
Thus, when we find $h_{4}$ we'll get the equation:
$-285h_{4} \equiv (-1)^5 \pmod{924} \Rightarrow$
$ 285h_{4} \equiv (-1)^{4}\pmod{924} \Rightarrow$
$ 285h_{4}(-1)^{4} \equiv 1\pmod{924} \Rightarrow$
$x=h_{4}(-1)^{4}177$ is a solution, because $h_{4}(-1)^{4}$ is $285^{-1}$ modulo 924, thus $285x \equiv 285*285^{-1}b \equiv b \pmod{924}$
Let's find $h_{4}$:
$\frac{h_1}{k_1}=\frac31 \Rightarrow h_1=3$
$\frac{h_2}{k_2}=3+\frac14=\frac{13}4 \Rightarrow h_2=13$
Using $h_n=q_nh_{n-1}+h_{n-2}$:
$h_3=6*13+3=81$
$h_4=1*81+13=94$ Bingo.
Thus $x=94*(-1)^4*175$.
This question is from an exam. The correct answer is $x \equiv 153,461,769 \pmod{924}$
Did I do something wrong? how can $x$ have multiple options(edit: how can I find all the options)?
Any help would be highly appreciated!