2

How to derive this integral

$\int_{-\infty}^{\infty}erf(\lambda x)\mathcal{N}(\mu, \sigma ^2)dx$

and this

$\int_{-\infty}^{\infty}(erf(\lambda x)-const)^2\mathcal{N}(\mu, \sigma ^2)dx$

where

$erf(x)=\frac{2}{\sqrt\pi}\int_{0}^{x}{e}^{-t^2}dx$ - is the error function

$\mathcal{N}(\mu, \sigma ^2)=\frac{1}{\sigma\sqrt{2\pi}}{e}^{-\frac{(x-\mu)^2}{2\sigma^2}}$ - is pdf of the normal distribution

From this paper: "...it can be shown by parameter differentiation with respect to mu and then integrating with respect to mu..." they have got quite simple result but I really don't understand how this trick works.

Edit:

So in order to summarize and make everything clear: My original goal was deriving aforesaid integrals. It is much easier to do if one knows $\int_{-\infty}^{\infty}\Phi(\lambda x)\mathcal{N}(\mu, \sigma ^2)dx$ and $\int_{-\infty}^{\infty}\Phi^2(\lambda x)\mathcal{N}(\mu, \sigma ^2)dx$

Based on what @ir7 has shown $\int_{-\infty}^{\infty}\Phi(\lambda x)\mathcal{N}(\mu, \sigma ^2)dx =\Phi\left(\frac{\lambda \mu}{\sqrt{1+\lambda^2\sigma^2}}\right)$ and from definition $erf(x)=2\Phi(\sqrt{2}x)-1$ and $\Phi(x)=\frac{1}{2}erf(\frac{x}{\sqrt{2}})+\frac{1}{2}$ we obtain:

\begin{equation}\int_{-\infty}^{\infty}erf(\lambda x)\mathcal{N}(\mu, \sigma ^2)dx = \int_{-\infty}^{\infty}(2\Phi(\lambda\sqrt{2}x)-1)\mathcal{N}(\mu, \sigma ^2)dx=2\int_{-\infty}^{\infty}\Phi(\lambda\sqrt{2}x)\mathcal{N}(\mu, \sigma ^2)dx-1=2\Phi\left(\frac{\lambda\sqrt{2}\mu}{\sqrt{1+2\lambda^2\sigma^2}}\right)-1=erf\left(\frac{\lambda\mu}{\sqrt{1+2\lambda^2\sigma^2}}\right)\end{equation}

\begin{equation}\int_{-\infty}^{\infty}erf(\lambda x)\mathcal{N}(\mu, \sigma ^2)dx = erf\left(\frac{\lambda\mu}{\sqrt{1+2\lambda^2\sigma^2}}\right)\end{equation}

In the case of $\int_{-\infty}^{\infty}\Phi^2(\lambda x)\mathcal{N}(\mu, \sigma ^2)dx$ ...

midas
  • 121

1 Answers1

1

Hint: The "trick" they are refering to is differentiation under integral. We have:

$$\frac{d}{dy} \int_a^b f(x,y)dx =\int_a^b \frac{\partial}{\partial y} f(x,y)dx,$$

if $f(x,y)$ and $\frac{\partial}{\partial y} f(x,y)$ are continuous in both variables and are, respectively, bounded in absolute value by two functions $g(x)$ and $h(x)$, both independent of $y$, such that $\int_a^b g(x)dx$ and $\int_a^b h(x)dx$ exist and are finite.

Note that ($\sigma >0$, $\lambda >0$): $$ F(\sigma,\mu) \triangleq \int_{-\infty}^{\infty} \Phi(\lambda x)\frac{1}{\sigma} {\cal N}\left(\frac{x-\mu}{\sigma}\right) dx = \int_{-\infty}^{\infty} \Phi( \lambda\sigma y+\lambda\mu) {\cal N}\left(y\right) dy .$$

where $\cal N$ is standard normal probability density function and $\Phi$ is standard normal cumulative distribution function.

Using the diferentiation under integral, its derivative wrt $\mu$ is $$ \frac{\partial}{\partial \mu} F(\sigma,\mu) = \int_{-\infty}^{\infty} \lambda{\cal N}(\lambda\sigma y+\lambda\mu) {\cal N}\left(y\right) dy = \frac{\lambda}{\sqrt{1+\lambda^2\sigma^2}} {\cal N}\left(\frac{\lambda\mu}{\sqrt{1+\lambda^2\sigma^2}}\right). $$ Finally, integrating wrt to $\mu$ from $-\infty$ to $\tilde{\mu}$ and noting that $\lim\limits_{\tilde{\mu}\to -\infty}F(\sigma, \tilde{\mu}) = 0$, we get: $$ F(\sigma, \tilde{\mu}) = \Phi\left(\frac{ \lambda\tilde{\mu}}{\sqrt{1+\lambda^2\sigma^2}}\right),$$ as per paper's statement.

You can check by yourself that the conditions of the theorem are met, the equalities I stated without full details are true, and adapt the result to the error function.

EDIT1: The following general formulae should help for the second integral (using the same method):

$$\int_{-\infty}^{\infty} \exp(Ay) \Phi(By+C) {\cal N}_{d,e^2}\left(y\right) dy = \exp\left(Ad+0.5e^2A^2\right)\Phi\left(\frac{ABe^2+Bd+C}{\sqrt{1+B^2e^2}} \right),$$

$$\int_{-\infty}^{x} \exp(Ay) \Phi(By+C) {\cal N}_{d,e^2}\left(y\right) dy = \exp\left(Ad+0.5e^2A^2\right)\Phi_2\left(\frac{x-d}{e}-Ae,\frac{ABe^2+Bd+C}{\sqrt{1+B^2e^2}}; \frac{-Be}{\sqrt{1+B^2e^2}}\right),$$

$$\int_{-\infty}^x \Phi(y) dy = x\Phi(x) + {\cal N}(x), $$ where $\Phi_2(\cdot,\cdot;\rho)$ is the cdf of bivariate standard normal with correlation $\rho$: $$ \Phi_2(x,y;\rho) =\frac{1}{2\pi\sqrt{1-\rho^2}}\int_{-\infty}^x \int_{-\infty}^y \mathrm e^{-.5\frac{u^2-2\rho uv+v^2}{1-\rho^2}}dudv.$$

So, denote $$G\left(\sigma, \mu\right)\triangleq \int_{-\infty}^{\infty} \Phi(\lambda\sigma y+\lambda\mu)^2 {\cal N}\left(y\right) dy.$$ Then $$\frac{\partial}{\partial \mu} G(\sigma,\mu) = \int_{-\infty}^{\infty} 2\lambda \Phi(\lambda\sigma y+\lambda\mu) {\cal N}(\lambda\sigma y+\lambda\mu){\cal N}\left(y\right) dy $$ $$ = \int_{-\infty}^{\infty} 2\lambda \Phi(\lambda\sigma y+\lambda\mu){\cal N}\left(\sqrt{1+\lambda^2\sigma^2} y+\frac{\lambda^2\sigma\mu}{\sqrt{1+\lambda^2\sigma^2}}\right) {\cal N}\left(\frac{\lambda\mu}{\sqrt{1+\lambda^2\sigma^2}}\right)dy$$ $$ = 2\lambda {\cal N}\left(\frac{\lambda\mu}{\sqrt{1+\lambda^2\sigma^2}}\right) \int_{-\infty}^{\infty} \Phi(\lambda\sigma y+\lambda\mu){\cal N}\left(\sqrt{1+\lambda^2\sigma^2} y+\frac{\lambda^2\sigma\mu}{\sqrt{1+\lambda^2\sigma^2}}\right) dy $$ $$ =\frac{2\lambda}{\sqrt{1+\lambda^2\sigma^2} } {\cal N}\left(\frac{\lambda\mu}{\sqrt{1+\lambda^2\sigma^2}}\right) \int_{-\infty}^{\infty} \Phi\left(\lambda\sigma \frac{z-\frac{\lambda^2\sigma\mu}{\sqrt{1+\lambda^2\sigma^2}}}{\sqrt{1+\lambda^2\sigma^2} }+\lambda\mu\right){\cal N}\left(z\right) dz $$ $$=\frac{2\lambda}{\sqrt{1+\lambda^2\sigma^2} } {\cal N}\left(\frac{\lambda\mu}{\sqrt{1+\lambda^2\sigma^2}}\right)\Phi\left(\frac{\lambda\mu}{\sqrt{1+\lambda^2\sigma^2}}\frac{1}{\sqrt{1+2\lambda^2\sigma^2}} \right). $$ It follows: $$G(\sigma, \tilde{\mu}) = \frac{2\lambda}{\sqrt{1+\lambda^2\sigma^2} } \int_{-\infty}^{\tilde{\mu}}{\cal N}\left(\frac{\lambda\mu}{\sqrt{1+\lambda^2\sigma^2}}\right)\Phi\left(\frac{\lambda\mu}{\sqrt{1+\lambda^2\sigma^2}}\frac{1}{\sqrt{1+2\lambda^2\sigma^2}} \right) d\mu$$ $$ =2 \int_{-\infty}^{\frac{\lambda\tilde{\mu}}{\sqrt{1+\lambda^2\sigma^2}}}{\cal N}\left(z\right)\Phi\left(\frac{z}{\sqrt{1+2\lambda^2\sigma^2}} \right) dz $$ $$ = 2\Phi_2\left(\frac{\lambda\tilde{\mu}}{\sqrt{1+\lambda^2\sigma^2}},0; -\frac{1}{\sqrt{2+2\lambda^2\sigma^2}}\right). $$

These calculations need to be verified.

Alternatively, the probabilistic interpretation of $G(\sigma,\mu)$ is $$\mathbb{E}\left[\Phi\left(\lambda\sigma X+\lambda\mu\right)^2\right],$$ and has been partially studied here Closed forms for various expectations involving the standard normal CDF (note Stein's Lemma referenced therein).

EDIT2:

$$\int_{-\infty}^{\infty} \lambda{\cal N}(\lambda\sigma y+\lambda\mu) {\cal N}\left(y\right) dy= \lambda \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}}\mathrm e^{-.5(\lambda\sigma y+\lambda\mu)^2}\frac{1}{\sqrt{2\pi}}\mathrm e^{-.5y^2} dy$$ $$ = \lambda \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}}\mathrm e^{-.5\left(\sqrt{1+\lambda^2\sigma^2} y+\frac{\lambda^2\sigma\mu}{\sqrt{1+\lambda^2\sigma^2}}\right)^2}\frac{1}{\sqrt{2\pi}}\mathrm e^{-.5\left(\frac{\lambda\mu}{\sqrt{1+\lambda^2\sigma^2}}\right)^2} dy$$ $$= \lambda {\cal N}\left(\frac{\lambda\mu}{\sqrt{1+\lambda^2\sigma^2}}\right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}}\mathrm e^{-.5\left(\sqrt{1+\lambda^2\sigma^2} y+\frac{\lambda^2\sigma\mu}{\sqrt{1+\lambda^2\sigma^2}}\right)^2}dy$$ $$ =\lambda {\cal N}\left(\frac{\lambda\mu}{\sqrt{1+\lambda^2\sigma^2}}\right) \frac{1}{\sqrt{1+\lambda^2\sigma^2}}, $$
with last equality coming from a variable change.

ir7
  • 6,249
  • Thank you, however it is not clear for me how to integrate $\int_{-\infty}^{\infty}\Phi(\lambda x)^2\mathcal{N}(\mu, \sigma ^2)dx$ – midas Feb 20 '14 at 11:28
  • The same method. I added the main calculation that you are going to run into. Please check the general formula (manually or otherwise) and correct it if it's wrong. – ir7 Feb 20 '14 at 14:46
  • I was trying to rederive your result and I can't integrate this $\int_{-\infty}^{\infty}\lambda\mathcal{N}(\lambda\sigma y +\lambda\mu) \mathcal{N}(\mu)dy$ I would be very grateful if you provide more details – midas Feb 20 '14 at 18:27
  • Unless I screwed up the square arrangements, it should be ok (EDIT2). – ir7 Feb 20 '14 at 19:33
  • Sorry but I do not understand how the formula from 1 edit will help to derive $F(\mu,\sigma)\equiv \int_{-\infty}^{\infty} \Phi(\lambda x)^2\frac{1}{\sigma}\mathcal{N}(\frac{x-\mu}{\sigma})dx=\int_{-\infty}^{\infty} \Phi(\lambda \sigma y+\lambda\mu)^2\mathcal{N}(y)dy$ Let me assume that algorithm is the same so$\frac{\partial F(\mu,\sigma)}{\partial \mu}=\int_{-\infty}^{\infty}2\lambda\Phi(\lambda \sigma y+\lambda\mu)\mathcal{N}(\lambda \sigma y+\lambda\mu)\mathcal{N}(y)dy$ So I can write this expression in the form of 1 edit but then I still have to integrate phi function. Tnx for any hints – midas Feb 24 '14 at 16:46
  • @midas see my EDIT1 improvement: probabilistic interpretation of integral and link to the method to compute it. Try to adapt the method exposed in the link and let me know if you still have trouble with this integral. – ir7 Feb 25 '14 at 03:29
  • @midas My first point in EDIT1 is that you CAN integrate $\Phi$ (and $\mathrm{erf}$) in closed-form. So you can finish it that way too. Did you finish it that way? – ir7 Feb 25 '14 at 22:02
  • @midas I pursued and edited the original approach (differentiation under integral), but my calculations need to be verified. – ir7 Feb 26 '14 at 05:11
  • Thank you very much @ir7. I have the same result except the last step form edit 1 is not clear for me. What is the extended notation of $\Phi_2(⋅,⋅;ρ)$? And are there some python code for calculation such function? – midas Feb 26 '14 at 11:29
  • @midas $ \Phi_2(x,y;\rho) =\frac{1}{2\pi\sqrt{1-\rho^2}}\int_{-\infty}^x \int_{-\infty}^y \mathrm e^{-.5\frac{u^2-2\rho uv+v^2}{1-\rho^2}}dudv$. Matlab (R might too) implements bivariate (and multivariate) normal pdf and cdf functions. They reference explicit papers (see, for example, Genz's paper), if you want to re-implement it: http://www.mathworks.com/help/stats/mvncdf.html – ir7 Feb 26 '14 at 13:47