I'm assuming you want the Kronecker product.
Is this the group you want?
gap> l := Group( [
> [[1,0,0],[0,1,1],[0,0,1]],
> [[1,0,0],[0,1,0],[0,1,1]]
> ] * One(GF(2)) );;
gap> g := GL(2,2);;
gap> gw := List( GeneratorsOfGroup( g ), x -> KroneckerProduct( x, One(l) ) );;
gap> lw := List( GeneratorsOfGroup( l ), x -> KroneckerProduct( One(g), x ) );;
gap> w := Group( Concatenation( gw, lw ) );;
gap> Size(w);
36
gap> Perform( GeneratorsOfGroup(w), function(x) Display(x); Print("\n"); end );
1 . . 1 . . . . . 1 . . 1 . . . . . 1 . . . . .
. 1 . . 1 . . . . . 1 . . 1 1 . . . . 1 . . . .
. . 1 . . 1 . . . . . 1 . . 1 . . . . 1 1 . . .
. . . 1 . . 1 . . . . . . . . 1 . . . . . 1 . .
. . . . 1 . . 1 . . . . . . . . 1 1 . . . . 1 .
. . . . . 1 . . 1 . . . . . . . . 1 . . . . 1 1
This is all matrices of the form: $$w = \left\{ \begin{bmatrix} A & B \\\ C & D \end{bmatrix} : A,B,C,D \in \ell \right\}$$
If you swap the order of the arguments to KroneckerProduct
then you get:
$$v = \left\{ \begin{bmatrix} I & 0 & 0 \\ 0 & A & B \\ 0 & C & D \end{bmatrix} : A,B,C,D \in g, I = 1_g \right\}$$
Here g
is all $2\times 2$ matrices, $$g = \operatorname{GL}(2,2) = \left\{ \begin{bmatrix} A & B \\ C & D \end{bmatrix} : A,B,C,D \in \mathbb{Z}/2\mathbb{Z}\right\} $$ and l
is the unique (up to iso) 3-dimensional rep of $\operatorname{GL}(2,2)$, $l=\operatorname{SL}(1,2) \times \operatorname{GL}(2,2)= \left\{ \begin{bmatrix} I & 0 & 0 \\ 0 & A & B \\ 0 & C & D \end{bmatrix} : A,B,C,D \in \mathbb{Z}/2\mathbb{Z}, I=1 \right\}$.
l
. BTW,g
is not used in what follows. – Olexandr Konovalov Feb 19 '14 at 18:25