3

I'm trying to derive the distance between two distinct points in hyperbolic space and I'm working on the Poincare upper half plane. So, with the parametrization

$$\sigma(t): x=r\cos(t), y=r\sin(t),\; \alpha\leq t\leq \beta$$

the distance is just

$$\mathrm{dist}((x_{1},y_{1}),(x_{2},y_{2}))=\int_{\alpha}^{\beta}\rho(\sigma(t))|\sigma'(t)|dt=\int_{\alpha}^{\beta}\frac{dt}{\sin(t)}=\ln\left|\frac{\tan\frac{\beta}{2}}{\tan\frac{\alpha}{2}}\right|.$$

We also know that from https://en.wikipedia.org/wiki/Poincar%C3%A9_half-plane_model that

$$\mathrm{dist}((x_{1},y_{1}),(x_{2},y_{2}))=\mathrm{arccosh}\left(1+\frac{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}{2y_{1}y_{2}}\right).$$

And we know from https://en.wikipedia.org/wiki/Poincar%C3%A9_metric that

$$\mathrm{dist}((z_{1},z_{2}))=2\mathrm{arctanh}\frac{|z_{1}-z_{2}|}{|z_{1}-\overline{z_{2}}|}=\log\frac{|z_{1}-\overline{z_{2}}|+|z_{1}-z_{2}|}{|z_{1}-\overline{z_{2}}|-|z_{1}-z_{2}|}.$$

Also from Expression of the Hyperbolic Distance in the Upper Half Plane that the last three formulation are equal. Question is I cannot find the equal connection between my calculation and the other three Can anyone help?

Elif.

Qmechanic
  • 12,298
  • I've improved your question's formatting; apologies if I changed your meaning. You can see here how I edited your question.

    Please see here for a guide to writing math with MathJax, and see here for a guide to formatting posts with Markdown.

    – Zev Chonoles Feb 18 '14 at 07:58
  • Thank you very much! I'm new at writing in Latex so your improvement will help. – user129164 Feb 18 '14 at 08:06
  • See http://math.stackexchange.com/questions/160338/expression-of-the-hyperbolic-distance-in-the-upper-half-plane. – Martín-Blas Pérez Pinilla Feb 18 '14 at 09:02
  • You can already see this link in my question. But this is not the answer! – user129164 Feb 18 '14 at 09:32
  • In the first formula for distance, how are $\alpha$ and $\beta$ related to $x_1,y_1,x_2,y_2$? This would be the first thing to look in. – user127096 Feb 20 '14 at 01:40
  • I already looked at it. But I couldn't come to an end. That's why I ask. – user129164 Feb 20 '14 at 12:27
  • Here's a completely different approach: Find an isometry that maps one point to $i$. Find another isometry that fixes $i$ and moves the second point to the imaginary axis. The distance between two points on the imaginary axis is very easy to compute. – Deane Mar 02 '24 at 16:06
  • The problem with your first calculation is that it assumes that the two points lie on a circle of radius $r$ centered at the origin. You need to first find the center and radius of the semicircle that passes through the two points. And then move the semicircle horizontally so that its center is at the origin. – Deane Mar 02 '24 at 16:08

1 Answers1

0

Here is one elementary proof:

  1. The Poincare upper half plane $\mathbb{R}\times \mathbb{R}_+$ has metric $$\begin{align} (ds)^2~=~&\frac{ dz d\bar{z}}{({\rm Im}z)^2}~=~\frac{(dx)^2+(dy)^2}{y^2}~=~\frac{(dr)^2+r^2(d\theta)^2}{r^2\sin^2\theta}, \cr z~=~&x+iy~=~re^{i\theta}~=~r(\cos\theta+i\sin\theta).\end{align}\tag{1}$$

  2. All geodesics are semicircles with center $c$ on the $x$-axis$^1$. By horizontal translation symmetry we may for simplicity assume from now on that $c=0$. (The final formulas will be translation invariant, and hence also work for $c\neq 0$.)

  3. The distance $d(z_1,z_2)$ between two points $z_1=r_1e^{i\theta_1}$ and $z_2=r_2e^{i\theta_2}$ is the arc length along the corresponding geodesic. Since $c=0$, we have $r_1=r=r_2$. By scale invariance, we may for simplicity assume from now on that $r=1$. (The final formulas will be scale invariant.)

  4. By $z_1\leftrightarrow z_2$ symmetry, we may for simplicity assume from now on that $0<\theta_1<\theta_2<\pi$.

  5. Therefore an infinitesimal distance is given by $$ ds~\stackrel{(1)}{=}~ \frac{d\theta}{\sin\theta}~=~d\ln\tan\frac{\theta}{2},\tag{2}$$ where $$ \begin{align}\tan\frac{\theta}{2}~=~&\frac{\sin\theta}{1+\cos\theta} ~=~\frac{1-\cos\theta}{\sin\theta}\cr ~=~&\frac{y}{1+x}~=~\frac{1-x}{y}\cr ~=~&\sqrt{\frac{1-x}{1+x}}~=~\frac{|z-1|}{|z+1|} ~=~\frac{|z-z_0|}{|z_{\pi}-z|}.\end{align}\tag{3}$$

  6. Then the distance is $$\begin{align} d(z_1,z_2) ~\stackrel{(2)}{=}~&\ln\frac{\tan\frac{\theta_2}{2}}{\tan\frac{\theta_1}{2}} ~\stackrel{(3)}{=}~\ln\frac{|z_2-z_0||z_{\pi}-z_1|}{|z_1-z_0||z_{\pi}-z_2|}\cr ~=~&\ln\frac{\sin\frac{\theta_2}{2}\cos\frac{\theta_1}{2}}{\sin\frac{\theta_1}{2}\cos\frac{\theta_2}{2}}~=~\ln\frac{\sin\frac{\theta_2+\theta_1}{2}+\sin\frac{\theta_2-\theta_1}{2}}{\sin\frac{\theta_2+\theta_1}{2}-\sin\frac{\theta_2-\theta_1}{2}}\cr ~\stackrel{(5)}{=}~&\ln\frac{|z_2-\bar{z}_1|+|z_2-z_1|}{|z_2-\bar{z}_1|-|z_2-z_1|}~=~2{\rm artanh}\frac{|z_2-z_1|}{|z_2-\bar{z}_1|}\cr ~=~&\ln\frac{\sin^2\frac{\theta_2}{2}\cos^2\frac{\theta_1}{2}}{\sin\frac{\theta_1}{2}\cos\frac{\theta_1}{2}\sin\frac{\theta_2}{2}\cos\frac{\theta_2}{2}} ~=~2\ln\frac{2\sin\frac{\theta_2}{2}\cos\frac{\theta_1}{2}}{\sqrt{\sin\theta_1 \sin\theta_2}}\cr ~=~&2\ln\frac{\sin\frac{\theta_2+\theta_1}{2}+\sin\frac{\theta_2-\theta_1}{2}}{\sqrt{\sin\theta_1 \sin\theta_2}}~\stackrel{(5)}{=}~2\ln\frac{|z_2-\bar{z}_1|+|z_2-z_1|}{2\sqrt{y_1 y_2}}\cr ~\stackrel{(7)}{=}~&2\ln\left(\sqrt{q^2+1}+q\right)~=~-2\ln\left(\sqrt{q^2+1}-q\right)\cr ~=~&2{\rm arsinh}q~\stackrel{(7)}{=}~2{\rm arsinh}\frac{|z_2-z_1|}{2\sqrt{y_1y_2}}\cr ~=~&2 {\rm arcosh}\sqrt{q^2+1}~\stackrel{(7)}{=}~2 {\rm arcosh} \frac{|z_2-\bar{z}_1|}{2\sqrt{y_1y_2}}.\end{align}\tag{4}$$ Here we have used that $$\left\{ \begin{array}{rcl} |z_2-z_1|&=&2\sin\frac{\theta_2-\theta_1}{2},\cr |z_2-\bar{z}_1|&=&2\sin\frac{\theta_2+\theta_1}{2}, \end{array}\right.\tag{5} $$ so that $$ \begin{align} |z_2-\bar{z}_1|^2-|z_2-z_1|^2 ~\stackrel{(5)}{=}~& 4\sin^2\frac{\theta_2+\theta_1}{2}-4\sin^2\frac{\theta_2+\theta_1}{2}\cr ~=~& 2\cos(\theta_2\!-\!\theta_1)-2\cos(\theta_2\!+\!\theta_1)\cr ~=~&4\sin\theta_1 \sin\theta_2~=~4y_1y_2, \end{align}\tag{6} $$ and hence $$\frac{|z_2-\bar{z}_1|}{2\sqrt{y_1y_2}}~\stackrel{(6)}{=}~\sqrt{1+q^2} \quad\text{where}\quad q~:=~\frac{|z_2-z_1|}{2\sqrt{y_1y_2}}.\tag{7} $$

  7. From $$ \sinh\frac{d(z_1,z_2)}{2} ~\stackrel{(4)}{=}~\frac{|z_2-z_1|}{2\sqrt{y_1y_2}}~\stackrel{(7)}{=}~q,\tag{8} $$ we also get that $$\begin{align} \cosh d(z_1,z_2)~=~&1+2\sinh^2\frac{d(z_1,z_2)}{2}~\stackrel{(8)}{=}~1+2q^2\cr ~\stackrel{(7)}{=}~&1+\frac{|z_2-z_1|^2}{2y_1y_2} ~=~\frac{(x_2-x_1)^2+y_1^2+y_2^2}{2y_1y_2}\cr ~=~&-X_1\cdot X_2 ,\end{align}\tag{9}$$ where in the last equality we introduced (dimensionless) imbedding coordinates.


$^1$ Sketched proof that all geodesics in the Poincare upper half space are semicircles with center at $y=0$:

  1. The Poincare upper half space $\mathbb{R}^d\times \mathbb{R}_+$ has metric $$ (ds)^2~=~\frac{(d\vec{x})^2+(dy)^2}{y^2}.\tag{10}$$

  2. The corresponding Lagrangian is $$ L~=~\frac{\dot{\vec{x}}^2+\dot{y}^2}{2y^2},\tag{11}$$ where dot denotes differentiation wrt. to the worldline (WL) parameter $t$.

  3. The corresponding momenta and energy are $$ {\rm const}~=~\vec{p}~=~\frac{\partial L}{\partial \dot{\vec{x}}}~=~ \frac{\dot{\vec{x}}}{y^2},\tag{12}$$ $$p_y~=~\frac{\partial L}{\partial \dot{y}}~=~ \frac{\dot{y}}{y^2},\tag{13}$$ and $$ {\rm const}~=~E~=~\vec{p}\cdot\dot{\vec{x}}+p_y\dot{y}-L~=~L, \tag{14}$$ where we have used Noether's theorem.

  4. We therefore get an ODE for $y$ $$ \pm\dot{y}~\stackrel{(11)+(12)}{=}~y\sqrt{2L-y^2p^2}, \qquad p^2~:=~\vec{p}^2,\tag{15}$$ which can be solved $$ t~\stackrel{(15)}{=}~\mp\frac{{\rm artanh}\sqrt{1-\frac{y^2p^2}{2L}}}{\sqrt{2L}}+{\rm const},\tag{16}$$ although we don't need eq. (16) in what follows.

  5. We calculate $$ \frac{d\vec{x}}{dy}~=~\frac{\dot{\vec{x}}}{\dot{y}}~\stackrel{(12)+(15)}{=}~\pm\frac{\vec{p}y}{\sqrt{2L-y^2p^2}},\tag{17}$$ which can be integrated $$ \vec{x}-\vec{c} ~\stackrel{(17)}{=}~\mp\frac{\vec{p}}{p^2}\sqrt{2L-y^2p^2}. \tag{18}$$

  6. Hence the geodesic lies on a $d$-dimensional sphere $$ (\vec{x}-\vec{c})^2+y^2~\stackrel{(18)}{=}~\frac{2L}{p^2},\tag{19}$$ with center $(\vec{c},0)$ and radius $\sqrt{\frac{2L}{p^2}}$.

  7. By translation symmetry, we may assume that $\vec{c}=\vec{0}$. By rotation symmetry, we may assume that $\vec{p}$ is parallel to the $x^1$-axis. $\Box$

Qmechanic
  • 12,298