I'm trying to prove using induction that $9$ divides $n^3 + (n+1)^3 + (n+2)^3$ whenever $n$ is a non-negative integer. So far, I have:
- Base case: $P(1) = (1) + (8) + (27) = 36, 36$ can be divided by $9$ so the base case is valid
- Inductive step: let $P(n)$ be the statement $9$ divides $n^3 + (n+1)^3 + (n+2)^3$. Assume $P(k)$ is true, so $9$ divides $k^3 + (k+1)^3 + (k+2)^3$.
And this is where I'm stuck. I'm not sure how to demonstrate that $9$ divides $P(n)$ when $n = k+1$. If someone could step me in the right direction that would be awesome. Thanks!