(http://math.stanford.edu/~ksound/Math171S10/Hw8Sol_171.pdf)
Prove for all $e > 0,$ there exists $d > 0$ : for all $x, y \ge 0$, $|x - y| < d \implies |\sqrt{x} - \sqrt{y}| < e$.
(a) Given $\epsilon>0$, pick $\delta=\epsilon^{2}$. First note that $|\sqrt{x}-\sqrt{y}|\leq|\sqrt{x}+\sqrt{y}|$.
Hence if $|x-y|<\delta=\epsilon^{2}$, then
$
|\sqrt{x}-\sqrt{y}|^{2}\leq|\sqrt{x}-\sqrt{y}||\sqrt{x}+\sqrt{y}|=|x-y|<\epsilon^{2}.
$
Hence $|\sqrt{x}-\sqrt{y}|<\epsilon$.
1. Where does $|\sqrt{x}-\sqrt{y}|\leq|\sqrt{x}+\sqrt{y}|$ issue from? How to presage this presciently?
Yes...can prove it. Square both sides. By dint of $|a|^2 = (a)^2$:
$|\sqrt{x}-\sqrt{y}|^2 \leq|\sqrt{x}+\sqrt{y}|^2 \iff (\sqrt{x}-\sqrt{y})^2 \leq(\sqrt{x}+\sqrt{y})^2 \iff - 2\sqrt{xy} \le 2\sqrt{xy} \\ \iff 0 \le 4\sqrt{xy}. █ $.
2. Figue or Intuition please for $|\sqrt{x}-\sqrt{y}|\leq|\sqrt{x}+\sqrt{y}|$? Feels fey.
I know $|x + y| \le |x| + |y| \iff |x - y| \le |x| + |y|$.
3. For scratch work, I started with $|\sqrt{x} - \sqrt{y}| < e$. But answer shows you need to start with $|\sqrt{x} - \sqrt{y}|^2$. How to presage this vaticly? What's the scratch work for finding $d = e^2$?
4. How does $d = e^2$ prove uniform continuity? I know this proves uniform continuity.
Solution needs to prove $d = e^2$ doesn't depend on x or y?