I'm mindful of the Quantifier Negation Laws and Negating a statement that ... several quantifiers.
- $\neg \; \exists \; P(x) \equiv \forall \; x \; \neg \; P(x) $
- $ \neg \; \forall \; x \; P(x) \equiv \exists \; \neg \; P(x) $
How and why can negation permeate/pervade through (What's the proper term?) the quantifiers?
In other words, how does negation transform $(♦) \to (♣)$? To wit, how does negation effect $(♣)$?
For example, I negate the definition of uniform continuity :
$$\color{#FF4F00}{\neg}(\; \forall \; e > 0 \: \exists \; d > 0 \: \forall \; c \in S \: \forall \; x \in S \: {\LARGE{[}} \; |x - c|< d \implies |f(x) - f(c)| < e {\LARGE{]}} \;) \tag{♦}$$
$$\iff \exists \; e > 0 \; \color{#FF4F00}{\neg}( \; \exists \; d > 0 \: \forall \; c \in S \: \forall \; x \in S \: {\LARGE{[}} \; |x - c|< d \implies |f(x) - f(c)| < e {\LARGE{]}} \;) $$
$$\iff \exists \; e > 0 \; \exists \; d > 0 \: \color{#FF4F00}{\neg}(\; \forall \; c \in S \: \forall \; x \in S \: {\LARGE{[}} \; |x - c|< d \implies |f(x) - f(c)| < e {\LARGE{]}} \;) $$
After the negation suffuses the first four quantifiers and converts each, $(♦)$ becomes: $$\exists \; e > 0 \: \forall \; d > 0 \: \exists \; c \in S \: \exists \; x \in S \:\: \color{#FF4F00}{\neg}{\LARGE{[}} \; |x - c|< d \implies |f(x) - f(c)| < e {\LARGE{]}} \tag{♣}$$
By virtue of Can $P \implies Q$ be represented by $P \vee \lnot Q $?, $$\begin{align} \color{#FF4F00}{\neg}{\LARGE{[}} \; |x - c|< d \implies |f(x) - f(c)| < e {\LARGE{]}} &\equiv \color{#FF4F00}{\neg}{\LARGE{[}} \; \neg( \; |x - c|< d \; ) \: \vee \:|f(x) - f(c)| < e {\LARGE{]}} \\ &\equiv \color{#FF4F00}{\neg}\neg( \; |x - c|< d \; ) \: \wedge \: \color{#FF4F00}{\neg}( \;|f(x) - f(c)| < e \; ) \\ &\equiv \; |x - c|< d \; \: \wedge \: |f(x) - f(c)| \ge e \end{align}$$