In an answer to Integrating a product of exponentials and error functions the integral $I(\gamma)$ below is evaluated using a differentiation technique:
$I(\gamma)= \int_0^\infty x^2\exp(-\delta x^2)\operatorname{erf}(\gamma x)\ \mathrm{d} x$ $I^\prime(\gamma) = \frac{2}{\sqrt{\pi}} \int_0^\infty x^3 \exp(-x^2 \left( \delta + \gamma^2 \right) ) \mathrm{d} x = \frac{1}{(\gamma^2 + \delta)^2} \frac{1}{\sqrt{\pi}}$
where the differentiation is wrt $\gamma$.
Thus:
$$ I(\gamma) = \int_0^\gamma \frac{1}{\sqrt{\pi}} \frac{1}{(\gamma^2+\delta)^2} \mathrm{d} \gamma = \frac{\gamma }{2 \sqrt{\pi } \delta \left(\gamma ^2+\delta \right)}+\frac{1}{2 \sqrt{\pi } \delta ^{3/2}} \arctan\left(\frac{\gamma }{\sqrt{\delta }}\right) $$
why is the final integral integrated between the limits 0 and $\gamma$?