3

I have to prove that

$$\lim_{n\to \infty} \frac {n^n} {n!}=\infty$$

I've tried to look for a lower bound that also converges to $\infty$ (I don't know if I'm explainig myself correctly), but I haven't found one yet. Applying L'Hôpital is way too complicated in $n!$, and the epsilon proof does not work as I have no way whatsoever of finding N.

Any ideas?

Lessa121
  • 1,298

2 Answers2

2

Setting $$ a_n=\frac{n^n}{n!}, $$ we have $$ \frac{a_{n+1}}{a_n}=\frac{(n+1)^{n+1}}{(n+1)!}\cdot\frac{n!}{n^n}=\frac{(n+1)^n\cdot n!}{n!\cdot n^n}=\frac{(n+1)^n}{n^n}=\left(1+\frac{1}{n}\right)^n \quad \forall n. $$ Since $$ \lim_n\frac{a_{n+1}}{a_n}=\lim_n\left(1+\frac{1}{n}\right)^n=e>2, $$ there is an $N \in \mathbb{N}$ such that $$ \frac{a_{n+1}}{a_n}>2 \quad \forall n\ge N. $$ It follows that $$ a_n\ge 2^{n-N}a_N \quad \forall n\ge N, $$ thus $$ \lim_na_n\ge \lim_n2^{n-N}a_N, $$ i.e. $\lim_na_n=\infty$.

HorizonsMaths
  • 16,526
0

check this out:

http://en.wikipedia.org/wiki/Stirling%27s_approximation

This is a famous estimation of n!.

Howell
  • 1