$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
\begin{align}
\color{#c00000}{\large\sum_{i\ =\ 1}^{n}{H_{i} \over i}}&
=\sum_{i\ =\ 1}^{n}{1 \over i}\sum_{k\ =\ 1}^{i}{1 \over k}
=\sum_{k\ =\ 1}^{n}{1 \over k}\sum_{i\ =\ k}^{n}{1 \over i}
=\sum_{i\ =\ 1}^{n}{1 \over i}
+\sum_{k\ =\ 2}^{n}{1 \over k}\sum_{i\ =\ k}^{n}{1 \over i}
\\[5mm]&=H_{n} + \sum_{k\ =\ 2}^{n}{H_{n} - H_{k - 1} \over k}
=H_{n} + \sum_{k\ =\ 2}^{n}{H_{n} \over k}
-\sum_{k\ =\ 2}^{n}{H_{k - 1} \over k}
\\[5mm]&=H_{n} + H_{n}\pars{H_{n} - 1} - \sum_{k\ =\ 1}^{n}{H_{k} - 1/k\over k}
\\[5mm]&=H_{n}^{2} - \color{#c00000}{\large\sum_{k\ =\ 1}^{n}{H_{k}\over k}}
+\sum_{k\ =\ 1}^{n}{1 \over k^{2}}\quad\imp\quad\boxed{\ds{\quad%
H_{n}^{2} - 2\sum_{i\ =\ 1}^{n}{H_{i} \over i}=-\sum_{k\ =\ 1}^{n}{1 \over k^{2}}}
\quad}
\end{align}
$$\imp\qquad\color{#66f}{\large%
\lim_{n\ \to\infty}\pars{H_{n}^{2} - 2\sum_{i\ =\ 1}^{n}{H_{i} \over i}}}
=-\sum_{k\ =\ 1}^{\infty}{1 \over k^{2}}
=\color{#66f}{\Large -\,{\pi^{2} \over 6\phantom{^{2}}}}\approx {\tt -1.6449}
$$