I am trying to calculate the Limit
$$\lim_{x \to 0} \sqrt[x]{\frac{\tan x}{x}}$$
Wolfram Alpha says it's $1$. But I get
$$\lim_{x \to 0} \sqrt[x]{\frac{\tan x}{x}}$$ $$= \exp \lim_{x \to 0} \ln \left(\left(\frac{\tan x}{x}\right)^{1/x}\right)$$ $$= \exp \lim_{x \to 0} \frac{\ln(\tan(x)) - \ln(x)}{x}$$ Using L'Hospital: $$= \exp \lim_{x \to 0} \frac{\frac{1}{\tan(x)\cos^2(x)} - \frac{1}{x}}{1}$$ $$= \exp \lim_{x \to 0} \frac{1}{\sin(x)\cos(x)} - \frac{1}{x}$$ $$= \exp \lim_{x \to 0} \frac{1}{\sin(2x)} - \frac{1}{x}$$ $$= \exp \lim_{x \to 0} \frac{x - \sin(2x)}{\sin(2x) x}$$
But when I calculate $$\lim_{x \to 0} \frac{x - \sin(2x)}{\sin(2x) x}$$ with Wolfram Alpha I get $\pm \infty$ . So the limit of $\lim_{x \to 0} \sqrt[x]{\frac{\tan x}{x}}$ should be $e^{\pm \infty} = 0 \text{ or } \infty \neq 1$. Which is both wrong.
Where is my mistake?