I was working on this question and I got a contradiction.
$\sin x \gt \dfrac x2$ for $0 \lt x \lt \dfrac {\pi}{2}$
$\arccos ( \sin x)) \gt \arccos (\dfrac x2)$
$\dfrac {\pi}{2} -x \gt \arccos (\dfrac x2)$
$\arcsin (\dfrac x2) +\arccos (\dfrac x2) -x \gt \arccos (\dfrac x2)$
$\arcsin (\dfrac x2) \gt x$
$\dfrac x2 >\sin x$
Why am I getting this contradiction if the original statement is true? Thanks.
P.S. I evaluated $\arccos ( \sin x))$ using Wolframalpha.