A problem that I have been thinking: For what kind of functions $f:[a,b]\to \mathbb R$ is $x\mapsto\sup_{t\in [a,x]}f(t)$ continuous? This is not true for bounded functions, take for example $f(x)=0$ in $[0,1]$ and $f(x)=1$ in $(1,2]$. It is however trivially true for continuous monotone functions. Assuming mere continuity for $f$ I can show right continuity of $\max_{t\in[a,x]}f(t)$:
For $\epsilon$ and some $\delta>0$, $$x\in [x_0-\delta,x_0+\delta]\implies f(x_0)-\epsilon<f(x)<f(x_0)+\epsilon$$ If $x\in [x_0,x_0+\delta]$ then $$\max_{t\in [a,x]}f(t)=\max\left\{\max_{t\in [a,x_0]}f(t),\max_{t\in [x_0,x]}f(t)\right\}$$ If $max_{t\in [a,x_0]}f(t)\ge \max_{t\in [x_0,x]}f(t)$ then $$\left|\max_{t\in [a,x]}f(t)-\max_{t\in [a,x_0]}f(t)\right|=0< \epsilon$$ Otherwise, $$\left|\max_{t\in [a,x]}f(t)-\max_{t\in [a,x_0]}f(t)\right|\le \max_{t\in [x_0,x]}f(t)-\max_{t\in [a,x_0]}f(t)<f(x_0)+\epsilon-\max_{t\in [a,x_0]}f(t)\le \epsilon$$ which proves right continuity. When I tried to prove left continuity I was stuck on showing $$\max_{t\in [x,x_0]}f(t)-\max_{t\in [a,x]}f(t)<\epsilon$$ Can this be circumvented?