9

For two integration below, what is the ratio of them? $$I_1 = \int_0^1\frac{dt}{\sqrt{1-t^4}}$$ $$I_2 = \int_0^1 \frac{dt}{\sqrt{1+t^4}}$$ What is the ration $\frac{I_1}{I_2}$?
I do not have any thoughts for solving this question so could anyone give me some hints?
Thank you!!

Gerry Myerson
  • 179,216
Bowen
  • 361
  • 1
    These are both elliptic integrals. $I_{1}$ is a pretty standard integral with value $\dfrac{\pi}{2M(1, \sqrt{2})}$ where $M(a, b)$ denotes arithmetic-geometric mean of two numbers $a, b$. – Paramanand Singh Feb 12 '14 at 05:45
  • 1
    The first one is the beta function in disguise, just let $x=t^4$. – Lucian Feb 12 '14 at 06:18
  • @Paramanand What do you mean by that? Sorry..I am a college student. Maybe some theorems are not known to me... – Bowen Feb 12 '14 at 16:51
  • @BoanBowenTAN: Well the integrals involving square roots of third and fourth degree polynomials are called elliptic integrals. They arise while calculating the perimeter of an ellipse (hence such name). You can read more about them in http://en.wikipedia.org/wiki/Elliptic_integral About Arithmetic Geometric Mean you can read my blog post http://paramanands.blogspot.com/2009/08/arithmetic-geometric-mean-of-gauss.html – Paramanand Singh Feb 13 '14 at 03:50
  • @Lucian: Almost. We need to show that the integral on $[0,1]$ is equal to the integral on $[1,\infty)$. See this answer. – robjohn Mar 03 '16 at 22:50
  • For what it's worth, this was Problem 4848 in American Mathematical Monthly ["Without performing any integration determine the ratio..."] proposed by Murray S. Klamkin and solved in 67 #3, March 1960), p. 300. I came across this web page while looking for more information about what I gave yesterday in this answer (I'm thinking of trying to evaluate that integral) and I recognized this as an old Monthly problem. – Dave L. Renfro Apr 14 '18 at 09:04

4 Answers4

9

The first one:let $t^2=\sin{x}$,then $$I_{1}=\dfrac{1}{2}\int_{0}^{\frac{\pi}{2}}\dfrac{dx}{\sqrt{\sin{x}}}$$

The second one: let $t^2=\tan{x}$

then $$I_{2}=\dfrac{1}{2}\int_{0}^{\frac{\pi}{4}}\dfrac{dx}{\sqrt{\sin{x}\cos{x}}}=\dfrac{1}{2\sqrt{2}}\int_{0}^{\frac{\pi}{2}}\dfrac{dx}{\sqrt{\sin{x}}}$$ so $$\dfrac{I_{1}}{I_{2}}=\sqrt{2}$$

math110
  • 93,304
4

Hint:

$$I_1(x)=\int_x^1\frac{dt}{\sqrt{1-t^4}}=\frac{1}{\sqrt{2}}\int_{0}^{\arccos x}\frac{du}{\sqrt{1-\frac{1}{2}\sin^2u}}$$

$$I_2(x)=\int_0^x \frac{dt}{\sqrt{1+t^4}}=\frac{1}{2}\int_{0}^{\arccos\frac{1-x^2}{1+x^2}}\frac{du}{\sqrt{1-\frac{1}{2}\sin^2u}}$$

and since $$\arccos 0 = \arccos \frac{1-1^2}{1+1^2}$$

$$\frac{I_1(0)}{I_2(1)}=\sqrt{2}$$

From the hint the substitutions should be pretty straightforward.


Added due to the comment below:

The first one: let $t=\cos u$, $u=\arccos t$.

$$\frac{dt}{\sqrt{1-t^4}}=\frac{-\sin udu}{\sqrt{1-\cos^4 u}}=\frac{-\sin udu}{\sqrt{\sin^2 u(1+\cos^2 u)}}$$

and you get the RHS almost immediately.

The second one: let $t=\tan\frac{u}{2}$, $t^2=\frac{1}{\cos^2 \frac{u}{2}}-1=\frac{1-\cos u}{1+\cos u}$, $u=\arccos \frac{1-t^2}{1+t^2}$. Plug it in, and get the RHS also (almost) immediately.

Vadim
  • 5,637
2

$\newcommand{\+}{^{\dagger}}% \newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}% \newcommand{\dd}{{\rm d}}% \newcommand{\down}{\downarrow}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\fermi}{\,{\rm f}}% \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\half}{{1 \over 2}}% \newcommand{\ic}{{\rm i}}% \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow}% \newcommand{\isdiv}{\,\left.\right\vert\,}% \newcommand{\ket}[1]{\left\vert #1\right\rangle}% \newcommand{\ol}[1]{\overline{#1}}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}% \newcommand{\sech}{\,{\rm sech}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ \begin{align} \color{#00f}{\large I_{1}}&\equiv\int_{0}^{1}{\dd t \over \root{1 - t^{4}}} =\int_{0}^{1}\pars{1 - t}^{-1/2}\,{1 \over 4}\,t^{-3/4}\,\dd t ={1 \over 4}\int_{0}^{1}t^{-3/4}\pars{1 - t}^{-1/2}\,\dd t ={1 \over 4}\,{\rm B}\pars{{1 \over 4},\half} \\[3mm]&={1 \over 4}\,{\Gamma\pars{1/4}\Gamma\pars{1/2} \over \Gamma\pars{3/4}} ={1 \over 4}\,{\Gamma\pars{1/4}\root{\pi} \over \pi/\bracks{\Gamma\pars{1/4}\sin\pars{\pi/4}}}= \color{#00f}{\large{1 \over 4\root{2\pi}}\,\Gamma^{\,2}\pars{1 \over 4}} \approx 1.3110 \end{align}

${\rm B}\pars{x,y}$ and $\Gamma\pars{z}$ are the Beta and Gamma functions, respectively. We used well known properties of them.

\begin{align} \color{#00f}{\large I_{2}}&\equiv\int_{0}^{1}{\dd t \over \root{1 + t^{4}}} =\half\int_{0}^{\infty}{\dd t \over \root{1 + t^{4}}} \end{align} Lets $\ds{x \equiv {1 \over 1 + t^{4}}\quad\iff\quad t = \pars{{1 \over x} - 1}^{1/4}}$ \begin{align} \color{#00f}{\large I_{2}}&=\half\int_{0}^{\infty}{\dd t \over \root{1 + t^{4}}} =\half\int_{1}^{0}x^{1/2}\,{1 \over 4}\,\pars{1 - x \over x}^{-3/4} \pars{-\,{\dd x \over x^{2}}} \\[3mm]&={1 \over 8}\int_{0}^{1}x^{-3/4}\pars{1 - x}^{-3/4}\,\dd x ={1 \over 8}\,{\rm B}\pars{{1 \over 4},{1 \over 4}} ={1 \over 8}\,{\Gamma\pars{1/4}\Gamma\pars{1/4} \over \Gamma\pars{1/2}} \\[3mm]&=\color{#00f}{\large{1 \over 8\root{\pi}}\,\Gamma^{\,2}\pars{1 \over 4}} \approx 0.9270 \end{align}

$$ \color{#00f}{\large{I_{1} \over I_{2}}} = {1/\pars{4\root{2}} \over 1/8} =\color{#00f}{\large\root{2}} $$

Felix Marin
  • 89,464
1

As shown in this answer, $$ \int_0^1t^{\alpha-1}\,(1-t)^{\beta-1}\,\mathrm{d}t =\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} $$ and $$ \int_0^\infty t^{\alpha-1}\,(1+t)^{-\beta}\,\mathrm{d}t =\frac{\Gamma(\alpha)\Gamma(\beta-\alpha)}{\Gamma(\beta)} $$ Substituting $t\mapsto1/t$ and then $t\mapsto t^{1/4}$, we get $$ \begin{align} \int_0^1\frac{\mathrm{d}t}{\sqrt{1+t^4}} &=\int_1^\infty\frac{\mathrm{d}t}{\sqrt{1+t^4}}\\ &=\frac12\int_0^\infty\frac{\mathrm{d}t}{\sqrt{1+t^4}}\\ &=\frac18\int_0^\infty t^{-3/4}(1+t)^{-1/2}\,\mathrm{d}t\\ &=\frac18\frac{\Gamma(1/4)^2}{\Gamma(1/2)} \end{align} $$ Furthermore, $$ \begin{align} \int_0^1\frac{\mathrm{d}t}{\sqrt{1-t^4}} &=\frac14\int_0^1t^{-3/4}(1-t)^{-1/2}\,\mathrm{d}t\\ &=\frac14\frac{\Gamma(1/4)\Gamma(1/2)}{\Gamma(3/4)} \end{align} $$ As shown in this answer, $\Gamma(x)\Gamma(1-x)=\pi\csc(\pi x)$. Therefore, $$ \begin{align} \frac{\displaystyle\int_0^1\frac{\mathrm{d}t}{\sqrt{1-t^4}}}{\displaystyle\int_0^1\frac{\mathrm{d}t}{\sqrt{1+t^4}}} &=2\frac{\Gamma(1/2)^2}{\Gamma(1/4)\Gamma(3/4)}\\ &=2\frac{\pi\csc(\pi/2)}{\pi\csc(\pi/4)}\\[12pt] &=\sqrt2 \end{align} $$

robjohn
  • 345,667