evaluate $\int_{0}^{1}\frac{x-1}{\ln x}dx$,where x is real.
Approach:
The suggestion is to differentiate $H(m)=\int_{0}^{1}\frac{x^{m}-1}{\ln x}dx$. This leads to
$$H(m)'=m\int_{0}^{1}\frac{x^{m-1}}{\ln x}dx, $$
$$H(m)''=\int_{0}^{1}\frac{x^{m-1}}{\ln x}dx+m(m-1)\int_{0}^{1} \frac{x^{m-2}}{\ln x}dx$$
...