2

evaluate $\int_{0}^{1}\frac{x-1}{\ln x}dx$,where x is real.

Approach:

The suggestion is to differentiate $H(m)=\int_{0}^{1}\frac{x^{m}-1}{\ln x}dx$. This leads to

$$H(m)'=m\int_{0}^{1}\frac{x^{m-1}}{\ln x}dx, $$

$$H(m)''=\int_{0}^{1}\frac{x^{m-1}}{\ln x}dx+m(m-1)\int_{0}^{1} \frac{x^{m-2}}{\ln x}dx$$

...

TKM
  • 2,485

1 Answers1

5

The hint is very good. Let $$\eta(s)=\int_{0}^{1}\frac{x^s-1}{\log x}dx$$ Then $$\eta'(s)=\int_0^1 \log x\frac{x^{s}}{\log x}dx=\int_0^1 {x^{s}} dx$$

Pedro
  • 122,002