You could use a series in powers of $y-1$:
$$ x = 1+2\, \left( y-1 \right) +{\frac {2}{3}} \left( y-1 \right) ^{2}-{
\frac {2}{9}} \left( y-1 \right) ^{3}+{\frac {14}{135}} \left( y-1
\right) ^{4}-{\frac {22}{405}} \left( y-1 \right) ^{5}+{\frac {82}{
2835}} \left( y-1 \right) ^{6}-{\frac {86}{6075}} \left( y-1 \right) ^
{7}+{\frac {622}{127575}} \left( y-1 \right) ^{8}+{\frac {1438}{
1148175}} \left( y-1 \right) ^{9}-{\frac {1025966}{189448875}} \left(
y-1 \right) ^{10}+{\frac {32909314}{3978426375}} \left( y-1 \right) ^{
11}-{\frac {1584376606}{155158628625}} \left( y-1 \right) ^{12}+{
\frac {1068478318}{93095177175}} \left( y-1 \right) ^{13}-{\frac {
3415445666}{279285531525}} \left( y-1 \right) ^{14}+{\frac {
87807997126}{6982138288125}} \left( y-1 \right) ^{15}-{\frac {
52325133235058}{4154372281434375}} \left( y-1 \right) ^{16}+{\frac {
153840284803882}{12463116844303125}} \left( y-1 \right) ^{17}-{\frac {
25287193065300454}{2131192980375834375}} \left( y-1 \right) ^{18}+\ldots
$$
which appears to converge for $|y-1| < 1$.