for a real number we know that
$$ f(a)= \int_{-\infty}^{\infty}dx \delta (x-a)f(x) $$
but what happens for $$ \int_{-\infty}^{\infty}dx \delta (x-2i)f(x) $$ ?
is this equal to $ f(2i) $ or equal to $0 $ , of course $ i= \sqrt -1 $ a complex number :)
if i use the generalize funtion approach $ \delta (ix)= \frac{sinh(nx)}{x \pi} $ but in the limit $ n \to \infty $ this limit makes no sense