-2

Knowing that $a_n \rightarrow a$ and $b_n=\frac{a_1+a_2+...+a_n}{n}$. How can I show that $b_n \rightarrow a$?

Mary Star
  • 13,956

1 Answers1

1

Easily $$\sup_{1\le i\le n}a_i \ge b_n = \dfrac{a_1+a_2+\ldots+a_n}{n}\ge\inf_{1\le i\le n}a_i$$ As $\displaystyle\lim_{n\to\infty} a_n=a\implies\limsup_{n\to\infty}a_n=\liminf_{n\to\infty}a_n=a$.

Thus by Sandwich theorem we have our desired result.

Grobber
  • 3,248