How would you take the limit of
$$\frac{\log(n!)}{\log(n^n)}$$
as $n\rightarrow\infty$.
I believe you have to remove the log raising it to their base. Is this correct ?
Thanks.
How would you take the limit of
$$\frac{\log(n!)}{\log(n^n)}$$
as $n\rightarrow\infty$.
I believe you have to remove the log raising it to their base. Is this correct ?
Thanks.
Hint:
Use Sterling's approximation of $n!$:
$$n!\sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$
as $n\rightarrow\infty$.
Solution:
By Sterling's approximation:
$$\lim_{n\rightarrow\infty}\frac{\log(n!)}{\log(n^n)}=\lim_{n\rightarrow\infty} \frac{\log((n/e)^n\sqrt{2\pi n})}{\log n^n}$$
Use logarithm laws to see
$$\log((n/e)^n\sqrt{2\pi n})=n\log n-n+\log(\sqrt{2\pi n})$$
and $\log(n^n)=n\log(n)$.
Then
$$\frac{n\log n-n+\log(\sqrt{2\pi n})}{n\log n}=1-\frac{1}{\log n}+\frac{\log(\sqrt{2\pi n})}{n\log n}$$
The last two terms all go to $0$ as $n\rightarrow\infty$. Thus we conclude
$$\lim_{n\rightarrow\infty}\frac{\log(n!)}{\log(n^n)}=1$$
Hints:
1)
$$ \ln(n!) = \sum_{k=1}^{n}\ln(k) \sim \int_{1}^{n}\ln(x)dx = n\ln n - n +1. $$
2)
$$ \ln(n^n) = n\ln n. $$