Consider $f:\mathbb{R} \to \mathbb{R}$, $f(x) = x$ on an interval $[-a, a]$.
Then my Riemann sum becomes:
$$\displaystyle S = \sum^{n-1}_{k = 0}a_{k}[x_{k} - x_{k - 1}]$$
where $a_{k}$ is the internal point of the subinterval $[x_{k-1}, x_{k}]$ of the partition $P = \{ x_{0}, x_{1}, ..., x_{n} \}$. How do I progress with this?