0

Consider $f:\mathbb{R} \to \mathbb{R}$, $f(x) = x$ on an interval $[-a, a]$.

Then my Riemann sum becomes:

$$\displaystyle S = \sum^{n-1}_{k = 0}a_{k}[x_{k} - x_{k - 1}]$$

where $a_{k}$ is the internal point of the subinterval $[x_{k-1}, x_{k}]$ of the partition $P = \{ x_{0}, x_{1}, ..., x_{n} \}$. How do I progress with this?

user2850514
  • 3,689

1 Answers1

0

For any subinterval of any partition of the interval $\;[-\delta,\delta]\;$, we can always choose one $\;0<a_l\in\Bbb Q\;$ and all the rest of the $\;a_k\in\Bbb R\setminus\Bbb Q\;$ , so in this case we get $$\sum_{k=1}^n a_k(x_k-x_{k-1})=a_l(x_l-x_{l-1})>0$$

On the other hand, if all the $\;a_i\in\Bbb R\setminus\Bbb Q\;$ , then the sum is obviously zero. This proves the Riemann sums do not approach any definite limit and thus the function isn't integrable.

DonAntonio
  • 211,718
  • 17
  • 136
  • 287