So I have the likelihood being:
$\prod^{n}_{i=1}(\frac{\lambda^{x}e^{-\lambda}}{x!})$
which is proportional to
$\lambda^{\sum_{i=1}^{n}x_{i}}e^{-n\lambda}$
The prior is standard exponential $e^{-\lambda}$
So the posterior is
$\lambda^{\sum_{i=1}^{n}x_{i}}e^{-\lambda(n+1)}$
So then would it be a gamma with parameters $\sum_{i=1}^{n}+1$ and $n+1$