For complex valued matrices $A,B$ where $B$ is invertible, does $$\det(I+B^{-1}AA^*)=\det(I+AA^*B^{-1})=\det(I+AB^{-1}A^*)=\det(I+A^*B^{-1}A)?$$ Here $A^*$ is the conjugate transform. I guess $\det(I+B^{-1}AA^*)=\det(I+AA^*B^{-1})$ holds by Sylvester's identity.
Correction $$\det(I+B^{-1}AA^*)=\det(I+AA^*B^{-1})=\det(I+A^*B^{-1}A)?$$